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Abstract. In Web search, a user first comes up with an information need and
issues an initial query. Then some retrieved URLs are clicked and other queries
are issued if he/she is not satisfied. We advocate that Web search is governed by
a hidden semantic space, and each involved element such as query and URL has
its projection, i.e., as a vector, in this space. Each of above actions in the search
procedure, i.e. issuing queries or clicking URLs, is an interaction result of those
elements in the space. In this paper, we aim at uncovering such a semantic space
of Web search that uniformly captures the hidden semantics of search queries,
URLs and other elements. We propose session2vec and session2vec+ models to
learn vectors in the space with search session data, where a search session is
regarded as an instantiation of an information need and keeps the interaction in-
formation of queries and URLs. Vector learning is done on a large query log from
a search engine, and the efficacy of learnt vectors is examined in a few tasks.

1 Introduction

In the study of word embedding, words are mapped into a vector space such that seman-
tically relevant words are placed near each other [16, 17, 1]. Word vectors are helpful
for a wide range of NLP tasks by better capturing syntactic and semantic information
than simple lexical features [23, 8, 14]. In this work, we explore to apply embedding
methodology to model the intrinsic hidden semantic space of Web search. Figure 1(a)
gives an example to illustrate the intuition. The user has an information need in mind
which can be represented as a 4-dimension vector, and each dimension indicates the
relevance of his need with a particular semantic topic. Although the user intends to
formulate queries conveying his need on the third dimension, the first two queries are
not precise enough. Then the user issues the last query that well matches his need, and
accordingly, the returned URLSs satisfy him. To generalize, websites and query terms
could also be involved and projected as vectors in the same space. Obviously, building
such a space governing the search procedure could be useful for different tasks, such as
query suggestion, result ranking, etc.

We conduct the semantic space learning using search session data since a search
session can be regarded as an instantiation of a particular information need. The learn-
ing task is cast as a vertex embedding problem on a set of graphs (built from ses-
sions), where the elements in a session are represented as vertices and related vertices
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Fig. 1. Search session and session graph.

are connected by edges. The use of graph seems a suitable choice for session repre-
sentation because it captures the semantic interactions among elements. Given user’s
information need, represented as a semantic vector, the probability of obtaining a ses-
sion is jointly determined by semantic meaning of involved elements, i.e., vertices of
the session graph. Then we perform vector learning for vertices via maximizing the
log-likelihood of a training data of sessions.

Our main contributions are: (1) a framework is proposed to learn a semantic space of
Web search, and different elements (such as queries, URLs, and terms) are projected as
vectors in this space. Vectors of different elements are directly comparable for semantic
similarity calculation, and our model has good applicability to unseen data; (2) We
use graph structure to represent session data and develop an approach for vertex vector
learning on session graphs. Our model can capture fine-grained structure information in
click-through data. It is flexible to incorporate other types of elements. (3) Our model
is trained on a large query log data from a search engine. Extensive experiments are
conducted to examine the efficacy of the constructed semantic space, and the results
show that the learnt vectors are helpful for different tasks.

2 Related Work
Researchers had observed the potential of generating semantic vectors for search queries
and Web pages [7, 10, 21]. Deep Structured Semantic Model (DSSM) [10] and Convo-
lutional Latent Semantic Model (CLSM) [21] employ deep neural network to map the
raw term vector of a query or a document to its latent semantic vector. Both of them use
the full text of pages as input, and CLSM also captures the contextual information. The
network architecture in our model is different from them and it can be trained more ef-
ficiently. Furthermore, our framework also learns vectors of terms and websites and can
be easily extended to include other elements, e.g. users. The learnt term vectors enable
our model to tackle unseen data. Some other studies attempted to learn binary vectors
for queries or URLs and binary values show the relevance to semantic dimensions [18].
[7] proposed Bi-Lingual Topic Model (BLTM) and linear Discriminative Projection
Model (DPM) for query-document matching at the semantic level. More specifically,
BLTM is a generative model and it requires that a query and its clicked documents share
the same distribution over topics and contain similar factions of words assigned to each
topic. DPM is learnt using the S2Net algorithm that follows the pairwise learning-to-
rank paradigm. Previous works also tried to learn query-document similarity from click-
through data with implicit semantic representation, such as bipartite graph or translation
models [4, 6,24]. [8] proposed to learn query and term vectors for query rewriting in
sponsored search. Here our framework performs vector learning for a more comprehen-
sive setting, i.e. including URLSs, queries, terms, and websites.



Another related area is the study of word embedding. A popular model for estimat-
ing neural network language model was proposed in [2]. Word2vec [16] is a develop-
ment with a simple architecture for efficient training. A development of word2vec maps
paragraphs into the same space of words [13], which shares similar architecture with
our basic model. In comparison, our work focuses on modeling session graph data, and
the session vector is incorporated in the networks to model users’ information need.
More importantly, our tailor-made enhanced model elegantly projects terms into the
same semantic space of search elements. Some other works employed neural networks
to learn concept vectors of input text objects for similarity calculation under a super-
vised setting [25].

3 Problem Formulation

Given a set of search sessions S = {s; }7_, as training data, we aim at finding a semantic
space to model Web search scenario so that the probability of observing the sessions in
S is maximized. Let 6 denote the parameters of the space (i.e., the semantic vectors of
elements in sessions). The log-likelihood objective is defined as follows:

00;8) = > log P(si;0), 1)
s; €S
where P(s;;6) is the probability of observing s; in the space.
Let e; denote an element such as a query or a URL in the session s;, and C(e;)
denote the context elements of e; in s;. Let v(e;) denote the vector of e;, and v(s;),
having the same dimensionality, denote the information need of the user corresponding

to s;. v(s;) is also called session vector. We assume that the probability of e; only de-
pends on C'(e;) and v(s;), and it is denoted as P(e;; C(e;), v(s;)). Therefore, P(s;;6)

is calculated as:
P(si;0) = [] Ples; Cley), visi). 2)
e;ES;

P(ej;C(ej),v(s;)) is calculated with the element vectors of C'(e;) and v(s;) (de-
scribed later). To summarize, our task is to learn vectors for elements in search ses-
sions so that the objective in Equation 1 is maximized. To do so, we should trans-
form each session into training instances of the form (e;, C(e;), s;) for calculating
P(e;;C(ej),v(s;:)), and a major task is to define the context C(e;) of e; in s;. For
better capturing the structure information in click-through data, we introduce a graph
representation of session data. Then we develop two models for our learning task by
extending an algorithm of word2vec [16]. 4

4 Basic Model for Vector Learning
4.1 Session Graph and Training Instances

In a search session, there are several types of elements. A user first issues a query, and
some URLs are clicked in the result list. To obtain better results, she may issue more

4 Existing methods for vector representation learning [2, 15,20, 16] cannot be readily applied
here due to: (1) our training data is a set of sessions and each of them is represented as a graph,
while the training data of existing methods is a set of word sequences; (2) a vector capturing
users’ information need is incorporated into our learning procedure. Moreover, we intend to
learn a space that uniformly embeds elements of different types such as queries and URLs.



queries. During browsing a clicked page, the user may also browse other pages in the
same website. Thus, the website is also involved as an element of the session.

Session Graph. A search session graph G = {V| E'} is defined as an undirected graph.
The vertex set V includes search query, clicked URL, and website. The edges are added
bewteen (1) two successive queries; (2) a clicked page and the corresponding query;
(3) a website and pages from it; (4) a website and a query that results in pages of this
website clicked.

An example is given in Figure 1(b). With a query ¢, the user clicked two URLs,
w1 and ug. Thus, the edges (¢1,u1) and (g1, us) are added. The websites hq and ho
of u; and uy are involved. Accordingly, we have the edges (u1, h1), (g1, k1), (u2, hs),
and (q1, ha). After browsing uy and ug, the user issued g2 and g3 and clicked more
URLs. C(e;) is defined as adjacent elements of e;. For example, we have C(¢1) =
{g2,u1,u2, h1, ho}. Each training instance (e, C(e;), s;) means that the target e; comes
from session s; with context C'(e;).

4.2 Basic Learning Model

The objective of our basic model can be written as follows:

00;S) =Y log P(si;0) = > > log P(ej; C(e;), v(si)). 3)
s,€S s;€S e;jEs;

The network, called session2vec (s2v for short), for calculating P(e;; C(e;),v(s;))
is given in Figure 2(a), which basically introduces an auxiliary vector into CBOW
model [16], as previously did in [13, 17]. The input layer takes the element vectors
of C(e;) and session vector v(s;). In the projection layer, the average of the element
vectors 7 is summed with v(s;) to get x;. The output layer contains a Huffman tree
with each distinct element in training sessions as a leaf. The more frequent an element
is, the shorter its Huffman code is.

Let p denote the path from the root to a leaf e; and L denote the length of p. Let v},
denote the vertices on p and we have vi = e;. Let ¢;.;—1 be the sequence of binary
codewords on p. Letv;.;,_; denote the vectors associated with the inner vertices v}’ ;
on p, each of them has the same dimensionality as x;. P(e;; C(e;), v(s;)) is calculated
as the probability of reaching the leaf e; along p (going through L —1 binary selections).
Specifically, at vertex v}, we select the branch having the codeword ¢; with probability
P(c57;,x;), which is defined with the sigmoid function o

Pei vy, %;) = {o(xv,)} - {1 — o (x;7,) 4)
P(e;; Cej),v(s;)) is calculated as:

L—-1
P(ej; Cley), v(s:) = [ [ Plesvix)- )
=1
Thus, combining Equations 5 and 3, the objective can be calculated with the network

in Figure 2(a).

We use the SGD algorithm to learn the vectors of elements, inner nodes of Huffman
tree, and sessions. During learning, each instance generated in Section 4.1 is fed into the
network and its related parameters are updated. The learning procedure is performed by
scanning all training instances one or a few times depending on efficiency requirement.

5 The number of contextual elements varies, so we calculate the average of contextual vectors.
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Fig. 2. Our models.
5 Enhanced Model for Vector Learning

With session2vec, each element (i.e., query, URL, and website) in training data is pro-
jected as a vector. However, s2v cannot deal with unseen elements in new data. To
solve this problem, we propose an enhanced learning model, session2vec+ (s2v+), as
depicted in Figure 2(b). The upper part of s2v+ is the same as s2v. The lower part,
having the same architecture, incorporates the term-based training instances in the form
of (tg,C(tg), s;) (tx is a term in s;). The session vector is shared by two parts as a
bridge to align the dimensions of element vectors and term vectors, learnt by the up-
per and lower parts, respectively. Thus, terms and elements are embedded in the same
space, and term vectors can be utilized to build vectors for new elements such as unseen
queries. Another advantage of s2v+ is that these term vectors can help solve the sparsity
issue in s2v, since the vectors of sparse elements learnt in s2v might be unreliable.

5.1 Training Instances for Term Vector Learning

We build term-based training instances by post-processing element-based instances.
Specifically, if e; of (e;, C(e;), s;) is a query or a URL, it is transformed into a set of
term-based instances. Let ¢;, denote a term in query e; or the URL title of e;. Each
corresponds to one term-based instance (¢, C(tx), s;) where C(ty) is the context of ¢
containing all terms of queries or URL titles in C'(e;). Noun phrase chunking is done
and a single term here may refer to a phrase, e.g. “New York Times”. Because ¢, could
also come from URL titles, our model is augmented to handle unseen query terms with
title terms.

5.2 Enhanced Learning Model

For s2v+, we define a new objective function as follows:
0(0;8) = Z log P(s;;0) + Z log P'(s:;6), (6)
s, €S s; €S
where P’(s;;0) is the probability of s; calculated with the term-based instances:
P'(s:0) = J] Pltw; O(ta), v(s0)), o
trpEs;
where P(tx; C(ty),v(s;)) is the probability of ¢ in s,. Then, ¢'(6; S) is written as:
Le—1 Lt—1

> t t t
CO;9) = 3 { X 3 legPlefivf.x5)+ > X log P(eivl,xp)}
s;€S ej€s; 1=1 tp€s; 1=1



where superscripts e and ¢ indicate the calculations with element instances and term
instances respectively. ©

Now we derive the gradient of parameters for a single training instance. Two types
of training instances from one session are processed separately in each iteration. We
first proceed with (e;, C(e;), s;) and let £(j,1) = log P(cf;~f,x5). After combined
with Equation 4, £(j,1) is written as:

0(5,0) = (1 = ci) log {o(xj7[)} + ci log {1 — o(xj7})}- ®)
With some derivations, the partial derivatives with respect to x§ and ~; are as follows:

00(4,1)

oxs {1 =l =57}, ©)
20(j,1) . . enroe

Therefore, the update formula of ~7{ is:
Vi Al {1 = — o (x5}, an

where 7 is the learning rate. x§ is an intermediate vector Our aim is to learn v(e’) for
e’ € C(e;), to do so, v(e') is updated with the partial derivative of x¢:

L¢—1

v(e) —v(e)+n D> {1—c —ox5v)- (12)
=1

Similarly, for a term-based instance (¢, C(t), s;), let £(k,1) = log P(c}; v, x5),
and update formulae are:

v n{l = e — o(xkv) X, (13)
Lt—1

v(t') —v(t)+n Y {1 —c — o) (14)
=1

where ¢’ € C(t;,). When updating the session vector v (s;), both types of instances are
considered:

D (15)

v(si) < v(si)+n

’
t

Lé—1 Lt-1
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tn ; ox,

e
xS

=1

The learning procedure for s2v can be easily derived by simplifying that of s2v+.

® One may notice that both P(s;; ) and P’(s;; ) are defined as probability of s; and they may
be unequal. In fact, refer to Equations 2, 4, and 5, the probability of a session is calculated
from element vectors and parameter vectors associated with the Huffman tree. Therefore, it
is possible that different types of input vectors, term-based or element-based, output different
values. We would not restrict P(s;;0) = P’(s;;0) since such constraint will make the model
less flexible in learning vectors for different elements. On the other hand, the session vector
v(si), as an intermediary, softly aligns the dimensions of element vectors and term vectors.



Table 1. Salient elements and terms in three dimensions.

| Terms | Queries | Websites
XIZETE (Andy Lau) XIEETE )T (daughter of Andy Lau) ent.sina.com.cn
JEI AL (Stephen Chow) R4 (master of Jet Li) ent.qq.com

Star #1#) (Bo Huang) JAiE (wife of Yun-Fat Chow) ent.ifeng.com
FIER (Jet Li) A AR (profile of Tony Leung) yule.sohu.com
JAiE R (Yun-Fat Chow) JA A K (girlfriend of Jay Chou) ent.163.com
TEEZE (You Are the Apple of My Eye)| T FE F-WERTTA] (showtimes of Avatar) Www.mtime.com

FHLHF (movie for smartphone) TolHJiEEL MG (Infernal Affairs online watching) | movie.douban.com
Movie L2 (If You Are the One) e 201k 3 M (theme song of If You Are the One) | www.veryced.com

resource| FAAELL (online movie) I 11 LBt 18] (showtimes of Ip Man) www.1905.com
i FLi% (Avatar) JEUIBFE S (box office of Aftershock) www.igiyi.com

A (Xunlei player) FETT % 7 I 3% (download Kugou music box) www.wandoujia.com

LR 4 (Duote software) ] (how to use SnapPea) www.onlinedown.net

Software| *EZE#{FFd (Onlinedown software) T # (download Sohu player) [www.pconline.com.cn

tf.0» (download center of Onlinedown)]  www.skycn.com
FeE N # (Skyen software) www.zol.com.cn

resource| &R SR £ (Kuwo music box)

i 7 3% (SnapPea)

6 Training Data And Case Study

6.1 Training Data

We employ a query log data set from Baidu search engine, including 10,413,491 unique
queries, 13,126,252 URLs, 1,006,352 websites, and 3,965,539 terms (coming from
queries and URL titles). Session boundaries are detected with a hybrid method of time-
gap-based detection and task-based detection [3, 12]: the interval of two consecutive
queries is no more than 15 minutes; and the similarity between two consecutive queries
is no less than a threshold. To calculate this similarity, we employ term vectors trained
in a baseline system (CBOW of word2vec, described later) to represent query terms and
the sum of them is used as query vector. The cosine similarity threshold is 0.5. In total,
we collected 23,676,669 sessions, each session contains 2.1 queries and 2.3 clicks on
average.

6.2 Case Study

Semantic dimensions. We show salient elements and terms of three dimensions (man-
ually entitled “Star”, “Movie resource” and “Software resource”), generated by s2v+,
in Table 1. These terms and elements have the largest values in these dimensions, mean-
while the frequency is > 100. For “Star”, five singers/actors from mainland China and
Hong Kong are output as salient terms. The queries mainly search for the personal in-
formation of stars. For websites, the entertainment homepages of five top websites are
listed. In “Movie resource”, popular movie titles are output as salient terms and the
queries are about movies’ showtime and scheme song. Interestingly, although “Star”
and “Movie resource” are related, our model generates different salient term sets and
query sets for them, focusing on different aspects. Presumably, it is because searching
stars and searching movies are two different information needs. The element-based and
term-based training instances are generated from individual sessions, thus the two infor-
mation needs are well identified in learning. The websites involved in these two needs
are also different and can help differentiate them to some extent.

Learnt vectors. The term vector It 5 K “#(Peking University)” and the query
vector “Peking University” learnt by s2v+ are given in Figure 3. The two vectors are
generally correlated well (cosine similarity is 0.591). Thus, we can reasonably derive
the vector of an unseen query with term vectors. The two vectors also show some dif-
ferences. The reason is that “Peking University” appears in queries or URL titles with
diverse meanings, such as “EMBA program in Peking University” and “Peking Univer-
sity Health Science Center”. For query “Peking University”, the dominant information
need is to find the university’s homepage or encyclopedia page.
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Fig. 3. The term vector of “Peking University” and the query vector of “Peking University”.

7 Quantitative Experimental Results
7.1 Settings

Variants of our framework. S2v+ can generate vectors of elements and terms (from
queries and URL titles). According to how to use these vectors, we have three variants:
S2v+.A directly uses element vectors; S2v+.B interpolates an element vector and the
term vectors from this element. For instance, for query ¢, we first calculate the sum of
its term vectors, then the sum is summed with v(q), and the result is used as the final
vector of g; S2v+.C uses the sum of term vectors of an element as its vector, and it is
applicable for both existing elements in the training data and new elements.

Comparison systems. We employ the CBOW algorithm of word2vec 7 (w2v for
short) as a baseline and run it on a corpus containing 1 billion Chinese Web pages
(much larger than the training data used in our model), and a vector is generated for
each term. PLSA [9] is another baseline, and we run it on a pseudo-document corpus
generated from our training data. Each pseudo-document is composed of queries and
URL titles of a training session, and topic vectors of terms are learnt.

7.2 Results for Query Similarity Prediction

We analyze our framework with a similar query ranking task to illustrate the behaviors
of its variants. NDCG [11] is employed as the metric and 100 dimensions are used for
all systems.

Task Description and Evaluation Data Each testing query has 5 candidate queries,
and the task is to rank the candidates according to their similarity with the testing query.
Cosine similarity is calculated with the learnt vectors.

We employ an annotated data set containing 500 testing queries, each of which has 5
candidate queries. A Likert scale with three levels is employed to assess the candidates.
Specifically, 3 means strongly relevant (e.g. “Bill Gates” and “founder of Microsoft”), 2
means relevant (e.g. “Bill Gates” and “Steve Jobs”), and 1 means irrelevant, (e.g. “Bill
Gates” and “Spider-Man”). Each candidate is assessed by 3 assessors and the average
score is rounded to the nearest relevance level. On average, each testing query has 1.7
strongly relevant candidates and 1.2 relevant candidates. These 500 testing queries are
divided into observed part (Q_obs) and unobserved part (Q_unobs). Q_obs has 129
testing queries, each testing query and its candidate queries are observed in our training
data. Q_unobs has 371 testing queries.

7 https://code.google.com/p/word2vec/



Table 2. Results of query similarity prediction on Q_obs.
[ w2V [PLSA[ s2v HsZV+.A[s2V+.B[sZV+.C
NDCG@1|0.769|0.727 |0.784 || 0.792 | 0.797 | 0.799

NDCG@30.804|0.786 [ 0.824 || 0.830 | 0.834 | 0.835
NDCG@50.833| 0.810 [0.838 || 0.841 | 0.849 | 0.853

Analysis of S2v Results on Q_obs For s2v, query vectors are directly learnt, and for the
baselines, the vector of a query is obtained by summing its term vectors. The results of
different methods are given in the left part of Table 2. S2v can outperform the baselines.
Specifically, on NDCG@1, s2v outperforms PLSA and w2v by about 8% (significant
with P < 0.01 in paired t-test) and 2% (P < 0.05), respectively. The reasons might be:
(1) our training instances are generated from session graphs. In each graph, the elements
have similar semantic meanings so that the contextual elements and the target element
(i.e., e;) in a training instance are semantically more cohesive. Such training instances
bring in less noise; (2) PLSA and w2v generate query vectors by summing the term
vectors, however, their term vectors are learnt without considering query and session
semantics and cannot well derive query vector. In contrast, s2v directly generates query
vectors; (3) s2v maintains a session vector, and the semantic of a session is normally
less ambiguous than a query. Thus, the session vector is helpful to guide vector learning
for queries by deriving more precise information need. W2v also performs well, and its
large training corpus helps deal with sparse queries more effectively.

Analysis of S2v+ Results Sparsity will hinder the effectiveness of learnt embeddings
by s2v. In addition, if a query was not observed in the training data, s2v cannot learn
a vector for it. S2v+ conducts vector learning for terms in a unified model. The learnt
term vectors can be used in different variants as described in Section 7.1.

Results on Q_obs. To examine the effectiveness of s2v+, we first compare its vari-
ants with s2v on Q_obs and the results are given in the right part of Table 2. S2v+.A
outperforms s2v by 1% on NDCG@]1 (P < 0.05). This shows that the unified learning
in s2v+ generates better vector representation for queries. It is because the lower part
of the network in Figure 2(b) for term vector learning can help overcome the sparsity
problem to some extent. Specifically, with the term-based learning part, the derived ses-
sion vectors are more accurate since the sparsity problem of terms is less severe. As
a result, accurate session vectors will help learn better query vectors. S2v+.B slightly
outperforms s2v+.A, which shows using term vectors to interpolate the query vector
can further solve the sparsity problem.

S2v+.C is the most effective one. It shows that the sum of term vectors generated
by s2v+ can better derive the query vector. It is probably because the unified learning
in s2v+ can better align the semantic meanings of queries and terms with the session
vector as bridge. The term vectors from the baselines are not as effective as ours for
deriving query vectors. S2v+.C performs better than s2v+.A and s2v+.B. The reason is
that s2v+.A and s2v+.B use query vectors, but the sparsity problem affects the reliability
of vectors of low-frequency queries. To have a closer look at the sparsity problem, we
divide Q_obs into 5 equal buckets, A, B, C, D, and E, according to the descending order
of frequency. Similarly, candidates queries are also divided into 5 buckets, A’, B’, C’,
D’, and E’. We evaluate the variants in different intervals and the results are shown



Table 3. Effect of query frequency.

A [0-20%)

B [20%-40%)

C [40%-60%)

D’ [60%-80%)

E [80%-1]

A [0-20%)

0.799 0.798 0.791

0.799 0.801 0.796

0.793 0.794 0.799

0.792 0.801 0.803

0.790 0.794 0.796

B [20%-40%)

0.797 0.796 0.794

0.796 0.797 0.793

0.790 0.789 0.786

0.788 0.796 0.798

0.786 0.790 0.797

C [40%-60%)

0.791 0.791 0.792

0.793 0.795 0.796

0.790 0.796 0.799

0.787 0.797 0.802

0.784 0.796 0.801

D [60%-80%)

0.785 0.791 0.799

0.783 0.796 0.797

0.783 0.752 0.196

0.781 0.785 0.805

0.780 0.789 0.800

E [80%-1]

0.786 0.792 0.807

0.779 0.787 0.803

0.778 0.790 0.792

0.776 0.782 0.790

0.771 0.797 0.798

in Table 3. In each cell, the results of s2v+.A, s2v+.B, and s2v+.C are given in the
upper, middle, and lower positions. The largest value is underscored, in bold and green,
the smallest value is in italic and red. As shown in the upper left of Table 3, S2v+.A
and s2v+.B perform better for more frequent queries, When the queries become less
frequent, moving toward the lower right corner, the performance of s2v+.A and s2v+.B
declines. Meanwhile, s2v+.C is not affected much and outperforms the other two.

Results on Q_unobs. We also examine the performance of s2v+.C on Q_unobs and
compare it with w2v and PLSA baselines. The results are given in Table 4. S2v+.C
achieves 8% and 4% improvements (P < 0.05) on NDCG@1 compared with PLSA
and w2v, respectively. This demonstrates term vectors generated with our model are
more effective due to the unified learning and introducing the session vector. Combining
the results in Tables 2 and 4, s2v+.C is the most effective system.

7.3 Results for URL Ranking

Setup. Here we examine the performance of our model in the task of URL ranking.
The relevance between a query and its candidate URLSs is computed as cosine similarity
of their vectors. Still, a query vector is obtained by summing the vectors of its terms.
For each URL, its vector is obtained by summing the vectors of terms in its title. We
introduce another baseline BM25 [19] which is a ranking function commonly used to
rank documents according to their relevance to a search query. Specifically, our BM25
baseline is a revision of the original BM25 formula to conduct normalization of term
frequency according to [22] and revise inverse document frequency according to [5]. As
discussed above, s2v+.C is the most effective variant and it also has better adaptability
for unseen data. In addition, URL vectors also face the sparsity problem. Therefore, we
conduct the comparison between s2v+.C and baselines.

Evaluation data. This data set has 1,000 queries of various length and popularity.
On average, each query has 19.8 marked URLSs retrieved by the query. A Likert scale
with five levels is employed to assess the relevance of each URL.

Results. The results are given in Table 5. All vector-based methods can outperform
BM25. Our model achieves the best results in all cases. Specifically, it outperforms the
baselines by about 4% to 9% on NDCG@1 (P < 0.01). Recall that we train s2v+ with
term-based training instances (together with element-based) from both URL titles and
queries. Presumably, such mixed instances make the learnt term vectors more capable
for capturing the similarity between queries and URLs. Another reason might be that

Table 4. Results of query similarity on Q_unobs.
[st+.C[ w2v [PLSA

Table 5. Results for ranking the result URLs.
[s2v+.C| w2v [PLSA[BM25

NDCG@1| 0.798 |0.766|0.736 NDCG@1| 0.611 [0.587|0.576 | 0.559
NDCG@3| 0.836 [0.812]0.787 NDCG@3| 0.632 |0.615|0.607 | 0.582
NDCG@5| 0.852 {0.837|0.815 NDCG@5| 0.640 [0.631|0.630 | 0.616




Table 6. Results for the prediction of website similarity.

[s2v+.S[s2v+.T[s2v.S| w2v [PLSA

NDCG@1| 0.794 | 0.786 {0.791|0.772|0.719
NDCG@3| 0.855 | 0.843 {0.849|0.832|0.763
NDCG@5| 0.883 | 0.880 {0.881|0.870|0.794

s2v+ jointly considers different types of elements (such as queries and URLSs) in learn-
ing, thus the learnt term vectors can implicitly encode the semantic similarity among
these elements to some extent.

7.4 Results for Website Similarity Prediction

Setup. In this task, the vectors from different systems are employed to calculate website
similarity. For PLSA and w2v, the vector of a website is obtained by summing the terms
vectors of its homepage title. Our model has three variants, namely, s2v.S, s2v+.S, and
s2v+.T. S2v.S and s2v+.S use the learnt website vectors directly. S2v+.T uses website
vectors by summing term vectors, as is done for baselines.

Evaluation data. This data set contains 500 testing websites with different popu-
larity. Each testing website has 5 candidate websites. A Likert scale with three levels is
employed to assess the candidate websites. Specifically, 3 means strongly relevant (e.g.
“sports.sina.com.cn” and “sports. qq.com”), 2 means relevant (e.g. “sports.sina.com.cn”
and “www.sina.com.cn”), and 1 means irrelevant, (e.g. “sports. sina.com.cn” and
“mil.qq.com”). On average, each testing website has 1.6 strongly relevant candidates,
and 1.4 relevant candidates. All the testing and candidate websites are covered by our
training data set.

Results. The results are given in Table 6. The variants of our model outperform
the baselines. Specifically, s2v+.S achieves 3% to 10% improvements (P < 0.05) on
NDCG@1 compared with baselines. Among the variants, s2v+.S and s2v.S perform
better than s2v+.T. It shows that the directly learnt website vectors are more effective
than summing term vectors of titles for similarity prediction. This observation is dif-
ferent from that of queries. One reason might be that the sparsity problem for websites
is not severe in training data. Another possible reason is that homepage titles, such as
“The best car website in China”, contain irrelevant terms.

8 Conclusions and Future Work

In this paper, we proposed a framework to uncover a semantic space for Web search.
We develop two neural-network-based models, i.e. session2vec and session2vec+, to
learn vectors for elements and terms. Compared with previous studies, our framework
can perform hidden semantic learning for different types of elements. Moreover, our
models enable the learning of vector representation on graph data. Experimental results
indicate that the learnt vectors are helpful for a few tasks in Web search. For the future
work, one direction is to extend our framework to model the interest profile of users.
Another direction is to enhance the session graph with the information of click order
and dwell time. A third direction is to derive the real-time information need with the
partial information of the current session.
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