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a b s t r a c t 

In the procedure of Web search, a user first comes up with an information need and a query is issued 

with the need as guidance. After that, some URLs are clicked and other queries may be issued if those 

URLs do not meet his need well. We advocate that Web search is governed by a unified hidden space, 

and each involved element such as query and URL has its inborn position, i.e., projected as a vector, in 

this space. Each of above actions in the search procedure, i.e. issuing queries or clicking URLs, is an inter- 

action result of those elements in the space. In this paper, we aim at uncovering such a unified hidden 

space of Web search that uniformly captures the hidden semantics of search queries, URLs and other in- 

volved elements in Web search. We learn the semantic space with search session data, because a search 

session can be regarded as an instantiation of users’ information need on a particular semantic topic and 

it keeps the interaction information of queries and URLs. We use a set of session graphs to represent 

search sessions, and the space learning task is cast as a vector learning problem for the graph vertices by 

maximizing the log-likelihood of a training session data set. Specifically, we developed the well-known 

Word2vec to perform the learning procedure. Experiments on the query log data of a commercial search 

engine are conducted to examine the efficacy of learnt vectors, and the results show that our framework 

is helpful for different finer tasks in Web search. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Web search is the fundamental tool for us to quickly retrieve

he needed Web pages. To improve the retrieval performance, re-

earchers have conducted extensive studies in different topics, such

s query reformulation [8,9,50] , query suggestion [2,34] , query

ifficulty (or quality) prediction [21,22,29] , query intent analysis

3,12,41] , page quality evaluation and spam detection [7,11,20] , and

earch result ranking [15,28,38] . In this paper, we exploit another

aradigm which aims at mining distributed representation of Web

earch elements, such as terms, queries, pages/URLs, and web-

ites. We advocate that Web search is governed by a unified hid-

en space, and each element can be embedded as a vector in the

pace. Fig. 1 depicts an example to show the intuition of this idea.

he user has an information need (e.g. “I wanna repair my iPhone

creen.”) in mind which can be semantically represented as a vec-

or of particular dimensions, 4 in this example, and each dimen-
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ion indicates the relevance of his need with a particular hidden

emantic topic. Under the guidance of this information need, three

ueries are issued. Although the user intends to formulate queries

onveying his need on the third dimension, say “repair screen”, the

rst two queries have a large semantic relatedness with the first

imension, say “Apple”. Consequently, they retrieve pages mainly

rom the website of Apple. After browsing a few pages (e.g. u 1 , u 2 ,

nd u 3 ) and feeling unsatisfied (maybe because of the high price),

he user issues the last query with a hidden semantic represen-

ation well matching with his need, and accordingly, the returned

RLs satisfy him better. To generalize the example, websites and

uery terms could also be involved and represented as vectors in

he same space. Obviously, uncovering such a space governing the

earch procedure can be very useful for different finer tasks of Web

earch. 

Researchers had observed the potential of generating semantic

ectors for queries and URLs/pages, and conducted some pioneer

nvestigations [19,25,46] . Our work is different from them in a few

spects. First, these works only learn vectors for queries and URLs,

hile our work also learns vectors for websites and terms. There-

ore, the learnt vectors in our work can be applied to different

asks, not limited to result ranking. Second, our model can be eas-
pace of web search from large-scale query log, Knowledge-Based 
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A  
ily extended to incorporate other types of elements, such as users.

Third, the learnt term vectors enable our model to tackle new data

such as unseen queries, while these previous works do not have

such capability. 

We conduct the semantic space learning from search session

data since a search session can be regarded as an instantiation of

a particular information need. To achieve the goal of learning con-

tinuous vector representations for different elements involved in

search sessions (e.g., queries, URLs, and websites), a few research

questions are raised, namely (a) How to represent the information

from session data for vector learning? (b) What kind of models

should one use to learn vector representations on session data?

and (c) How to augment the model to deal with unseen queries

from new sessions? 

We cast this vector learning task with session data as a learn-

ing problem on a set of graphs, where each graph corresponds

to a session, and the elements in a session are represented as

vertices and related vertices are connected by edges. The use of

graph serves as a suitable choice for session representation since it

can capture the semantic interactions among the elements. Given

the user’s information need represented as a semantic vector, the

probability of obtaining a session is jointly determined by the se-

mantic meaning of involved elements, i.e., vertices of the session

graph. Then we perform vector learning for vertices by maximiz-

ing the log-likelihood of a training session data set. With the learnt

representation scheme, we can perform hidden semantic analysis

on new session data, given queries or clicked URLs of the new ses-

sion as source information. 

Contributions . The main contributions of this work are as fol-

lows. 

• We propose a framework of learning a unified semantic space

of Web search, and different elements, such as queries, URLs,

and terms, are embedded as vectors in this space. The vectors

of different types of elements are directly comparable for simi-

larity calculation. And our model also has good applicability on

unseen data. 

• We use graph structure for session data representation and de-

velop an approach for vertex vector learning on a set of graphs.

Our model can capture fine-grained structured information in

click-through data. It is generic and naturally lends itself to

extensions incorporating other types of elements from session

data. 

• Our model is trained on a large query log data generated by

Baidu 1 search engine. Extensive experiments are conducted to

examine the efficacy of the constructed semantic space, and

the results show that the learnt vectors are helpful for differ-

ent tasks. 

This article substantially extends our previous work published

as conference paper [10] . First, we elaborate on more techni-

cal details of the proposed model. Second, more experiments are

conducted and more case studies are given, such as the experi-

ments on entity recommendation in Section 6.6 and case studies

in Section 5.2 . Third, the differences between our work and previ-

ous works are discussed more thoroughly across different sections,

such as Sections 1, 4 , and 7 . 

The remainder of the article is organized as follows. We first

give the problem definition in Section 2 . After the first model

is described in Section 3 , an enhanced model is described in

Section 4 . The experimental dataset and case studies are given in

Section 5 , then the experimental settings and results are discussed

in Section 6 . After related works are reviewed in Section 7 , we con-
1 http://www.baidu.com/ . 
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lude the article and provide some possible directions for the fu-

ure work in Section 8 . 

. Problem formulation 

We aim at uncovering a semantic space that governs the Web

earch procedure via projecting each involved element (such as

earch query and URLs) in Web search log as a vector of certain

imensions. The task is precisely defined as follows. Given a set

f search sessions S = { s i } n i =1 
as training data, we aim at finding a

nified semantic space to model Web search scenario so that the

robability of observing the sessions in S is maximized. Let θ de-

ote an instantiation of model parameters of the space. The log-

ikelihood objective function is expressed as follows: 

 (θ ; S) = 

∑ 

s i ∈ S 
log P (s i ; θ ) , (1)

here P ( s i ; θ ) denotes the probability that s i is observed in the
pace with the parameters θ . Our goal is to find the best parame-

ers by maximizing the above objective. 

In our model, the parameters refer to the hidden vectors of in-

olved elements in sessions. Let e j denote an element such as a

uery or a URL in s i , and v ( e j ) denote the vector representation of

 j . Let v ( s i ) denote the information need, represented as a vector,

f the user corresponding to the session s i . v ( s i ) is also called ses-

ion vector. v ( s i ) and v ( e j ) have the same dimensionality. Let C ( e j )

enote the context elements of e j in s i . We assume that the prob-

bility of e j only depends on its context C ( e j ) and the user’s infor-

ation need, and it is denoted as P ( e j ; C ( e j ), v ( s i )). Therefore, P ( s i ;

) can be calculated as: 

 (s i ; θ ) = 

∏ 

e j ∈ s i 
P (e j ;C(e j ) , v (s i )) . (2)

 ( e j ; C ( e j ), v ( s i )) is calculated with the vectors of elements in C ( e j )

nd the vector v ( s i ). The calculation will be described later. To

ummarize, our task is to learn vector representations of the ele-

ents in search sessions so that the objective function in Eq. (1) is

aximized. To perform learning, we need to transform each ses-

ion into training instances with the form ( e j , C ( e j ), s i ) for calculat-

ng P ( e j ; C ( e j ), v ( s i )). To do so, a major task is to define the con-

ext C ( e j ) of the element e j in the session s i . For better capturing

he structured information in click-through data, we introduce a

raph representation of session data, which will be discussed in

ection 3 . 

There are some existing studies conducting vector representa-

ion learning for words in Natural Language Processing and Speech

ecognition [6,35,37,44] . However, they cannot be directly applied

o our task due to the following reasons. Our training data is

 set of sessions and each of them is represented as a session

raph, while the training data of existing methods is a set of word

equences. In addition, a vector capturing the user’s information

eed is incorporated into our learning procedure. Moreover, we in-

end to learn a unified space that embeds the elements of different

ranularities such as queries, URLs and terms. 

. Basic model for vector learning on session graphs 

.1. Session graph and training instances 

In a search session, there are several types of involved elements.

 user first issues a query, and some URLs are clicked in the result

ist. To obtain better results, she may issue more queries. When

rowsing a clicked page, the user may also browse other pages in

he same website. And the corresponding website is also involved

s an element of the session. Thus, a session involves three types
pace of web search from large-scale query log, Knowledge-Based 
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Fig. 1. An example of search session. The user has an information need in mind, which can be represented as a vector in a semantic space. With this information need in 

mind, the user issued three queries and clicked some URLs. Queries and URLs are also represented with vectors in the same space. The darker a dimension is, the larger the 

corresponding value is. 

Fig. 2. An example of session graph, generated from Fig. 1 . 
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Fig. 3. Basic learning model: session2vec. The training instances in the input layer 

have the form of ( e j , C ( e j ), s i ) and C(e j ) = { e 1 , e 2 , · · · } . 
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f elements, namely, search query, URL, and website. To better cap-

ure the structural information in click-through data, we introduce

 graph structure to represent sessions. 

efinition 1 (Session Graph) . For a search session, its graph G =
 V, E} is defined as an undirected graph. The vertex set V includes
hree types of vertices, namely, search query, clicked URL, and

ebsite. The edges are built as follows: (1) two successive queries

re connected by an edge; (2) a clicked URL is connected with the

orresponding query that retrieves the URL; (3) a website is con-

ected with the URLs that come from it and the queries that result

n the clicks. The intuition behind this procedure is that if there is

ossible semantic relationship between two elements, we connect

hem with an edge. 

An example of session graph is given in Fig. 2 . With a query

 1 , a user clicked two URLs, namely, u 1 and u 2 . Thus, we have two

dges ( q 1 , u 1 ) and ( q 1 , u 2 ). The corresponding websites of u 1 and

 2 are h 1 and h 2 , and they are also involved in the graph. Accord-

ngly, we have the edges ( u 1 , h 1 ), ( q 1 , h 1 ), ( u 2 , h 2 ), and ( q 1 , h 2 ). Af-

er browsing u 1 and u 2 , the user issued two more queries q 2 and

 3 and clicked more URLs. C ( e j ) is defined as the set of elements

hat are adjacent to e j in the graph. For example, in Fig. 2 , we have

(q 1 ) = { q 2 , u 1 , u 2 , h 1 , h 2 } . To summarize, each generated training

nstances has the form of ( e j , C ( e j ), s i ) which means that the target

lement e j comes from the session s i with the context C ( e j ) from

he same session. 
Please cite this article as: L. Bing et al., Learning a unified embedding s

Systems (2018), https://doi.org/10.1016/j.knosys.2018.02.037 
.2. Basic learning model 

The objective function of our basic model can be written as fol-

ows: 

 (θ ; S) = 

∑ 

s i ∈ S 
log P (s i ; θ ) = 

∑ 

s i ∈ S 

∑ 

e j ∈ s i 
log P (e j ;C(e j ) , v (s i )) . (3) 

e first develop a network for calculating the probability P ( e j ;

 ( e j ), v ( s i )) with the training instance ( e j , C ( e j ), s i ) by extending

ord2vec [37] . As depicted in Fig. 3 , this network has three layers,

amely, the input layer, the projection layer, and the output layer.

he input layer takes the vectors of elements in C ( e j ) and the ses-

ion vector v ( s i ) as the input. In the projection layer, the average of

he element vectors is first calculated. Then the average is summed

ith v ( s i ). The sum vector is denoted as x j . Note that the number

f contextual elements may vary. To handle this, we calculate the

verage of contextual vectors. The output layer contains a structure

f Huffman tree with each distinct element in the training sessions

s a leaf. The more frequent an element is, the shorter its Huffman

ode is. 

To compute the probability P ( e j ; C ( e j ), v ( s i )) with the above net-

ork, we first introduce some notations. Let p denote the path

rom the root to the leaf e j in the Huffman tree and L denote the
pace of web search from large-scale query log, Knowledge-Based 

https://doi.org/10.1016/j.knosys.2018.02.037
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Fig. 4. Enhanced learning model session2vec+. The training instances of the upper 

part and the lower part have the forms of ( e j , C ( e j ), s i ) and ( t k , C ( t k ), s i ). 
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length of p . Let v p 
1: L 

denote the vertices on the path p and thus we

have v p 
L 

= e j . Let c 1: L −1 be the sequence of binary codewords on

the path p . Let γ1: L −1 denote the parameter vectors associated with

the inner vertices v p 
1: L −1 

on p , each of which is a vector of the same

dimensionality as x j . P ( e j ; C ( e j ), v ( s i )) is calculated as the probabil-

ity of reaching the leaf e j along the path p . To reach e j along p , we

need to go through L − 1 binary selections. Specifically, at the inner

vertex v p 
l 
, we select the branch having the codeword c l with the

probability P ( c l ; γ l , x j ), which is defined with the sigmoid function

σ as follows: 

P (c l ;γ l , x j ) = { σ (x j γ l ) } 1 −c l · { 1 − σ (x j γ l ) } c l . (4)

Therefore, P ( e j ; C ( e j ), v ( s i )) is equal to the product of these L − 1

probabilities: 

P (e j ;C(e j ) , v (s i )) = 

L −1 ∏ 

l=1 

P (c l ;γ l , x j ) . (5)

Thus, combining Eqs. (5) and (3) , the objective function can be cal-

culated with the network shown in Fig. 3 . 

3.2.1. Complexity and training 

As discussed in Word2vec [36,37] , the hierarchical softmax ver-

sion’s complexity is Q = N × D + D × log 2 (V ) per training example,

where N is the context size (equivalent to the average context size

of training instances in our model), D is the vector dimensionality,

and V is the vocabulary size (i.e. the number of distinct elements

in our training query log). The total time complexity is Q × E × T ,

where E is the number of training epoches, and T is the number

of training examples. In our basic model, we include the computa-

tion of an additional session vector. Therefore, our time complexity

per training example is (N + 1) × D + D × log 2 (V ) . Compared with

Word2vec, our basic model needs S ×D additional space for storing

the session vectors, where S is the number of training sessions. 

We use the stochastic gradient ascent algorithm to learn three

types of parameters, namely, the vectors of elements, the vectors of

the inner nodes in the Huffman tree, and the vectors of sessions.

During the learning procedure, each instance generated in the pre-

vious section is fed into the network and the parameters related to

the instance are updated. To maximize the objective in Eq. (3) , the

updating strategy is to make the individual probability P ( e j ; C ( e j ),

v ( s i )), calculated with the instance ( e j , C ( e j ), s i ), as larger as pos-

sible. The entire learning procedure is performed by scanning the

whole set of training instances one or a few epoches depending on

the efficiency requirement. For reference convenience, this model

is called session2vec . 

4. Enhanced model for vector learning 

With session2vec, each element (i.e., query, URL, and website)

appearing in the training data can be represented as a vector. How-

ever, session2vec cannot deal with unseen queries when analyz-

ing new session data. To solve this issue, we extend session2vec

and propose a unified learning model which is depicted in Fig. 4

and referred to as session2vec+ . The upper part of session2vec+ is

the same as session2vec depicted in Fig. 3 . The lower part has the

same design as the upper part and it incorporates the term-based

training instances in the form of ( t k , C ( t k ), s i ), which are also gener-

ated from the corresponding session where the element-based in-

stances come from. The session vector is shared by the two parts

and plays the role of bridge to align the dimensions of element

vectors learnt by the upper part and dimensions of term vectors

learnt by the lower parts. Consequently, the terms are embedded

in the same semantic space as the elements in the sessions. Thus,

the term vectors can be utilized to build vectors for new elements

such as unseen queries. Another advantage of session2vec+ is that
Please cite this article as: L. Bing et al., Learning a unified embedding s

Systems (2018), https://doi.org/10.1016/j.knosys.2018.02.037 
hese term vectors can help solve the sparsity issue in session2vec,

ince the vectors of sparse elements learnt in session2vec are likely

nreliable. 

.1. Training instances for term vector learning 

We build term-based training instances by post-processing

hose element-based instances in Section 3.1 . Specifically, if e j of

he instance ( e j , C ( e j ), s i ) is the query or the URL, it is transformed

nto a set of term-based instances. Let t k denote a term in a query

r a URL title. Each term t k corresponds to one term-based in-

tance in the form of ( t k , C ( t k ), s i ) where C ( t k ) is the context of

 k and contains all the terms of queries and URL titles in C ( e j ). If

n element in C ( e j ) is a website, it does not contribute to the term

ontext so as to avoid the general terms in website titles. In this

tage, noun phrase chunking is conducted and a single term here

ay refer to a phrase such as “Stanford University” and “New York

imes”. Note that, in addition to existing queries, the terms may

lso come from the URL titles. Thus, our model is also augmented

o handle the unseen query terms with those title terms. 

.2. Enhanced learning model 

For session2vec+ depicted in Fig. 4 , we define a new objective

unction as follows: 

 

′ (θ ; S) = 

∑ 

s i ∈ S 
log P (s i ; θ ) + 

∑ 

s i ∈ S 
log P ′ (s i ; θ ) , (6)

here P ′ ( s i ; θ ) is the probability of s i calculated with the term-

ased training instances. Similar to P ( s i ; θ ), P 
′ ( s i ; θ ) is calculated

s: 

 

′ (s i ; θ ) = 

∏ 

t k ∈ s i 
P (t k ;C(t k ) , v (s i )) , (7)

here P ( t k ; C ( t k ), v ( s i )) is the probability of t k in s i and its calcula-

ion procedure is the same as for P ( e j ; C ( e j ), v ( s i )). Therefore, � 
′ ( θ ;

 ) can be written as: 

 

′ (θ ; S) = 

∑ 

s i ∈ S 
{ ∑ 

e j ∈ s i 

L e −1 ∑ 

l=1 

log P (c e l ;γe 
l , x 

e 
j ) 

+ 

∑ 

t k ∈ s i 

L t −1 ∑ 

l=1 

log P (c t l ;γ t 
l , x 

t 
k ) } , (8)
pace of web search from large-scale query log, Knowledge-Based 
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here superscripts e and t indicate the calculations for element

nstances and term instances respectively. 

One may notice that both P ( s i ; θ ) and P 
′ ( s i ; θ ) are the proba-

ilities of s i and they may be unequal. In fact, refer to the Eqs. (2) ,

4) , and (5) , the probability of a session is defined as the oper-

tion result of the sigmoid function on the semantic vectors and

he parameter vectors associated with the Huffman tree. Conse-

uently, it is possible that different types of input vectors, term-

ased or element-based, output different probabilities. We do not

estrict P ( s i ; θ ) and P 
′ ( s i ; θ ) to be equal as hard constraints in the

ormulation since such constraints may make our model less flexi-

le in learning the semantic vectors for different elements. On the

ther hand, the session vector of s i , as an intermediary, softly co-

rdinates the learnt vectors of elements and terms to align their

imensions. 

We employ the stochastic gradient ascent algorithm to maxi-

ize the objective function � ′ ( θ ; S ). In the learning procedure, a
ajor task is to derive the gradient with respect to the parame-

ers related to a training instance. Here we handle the two types

f training instances from the same session separately in each it-

ration. We first proceed with an element-based instance ( e j , C ( e j ),

 i ) and let � ( j, l) = log P (c e 
l 
;γe 

l 
, x e 

j 
) . After combined with Eq. (4) , � ( j,

 ) is written as: 

 ( j, l) = (1 − c e l ) log { σ (x e j γ
e 
l ) } + c e l log { 1 − σ (x e j γ

e 
l ) } . (9)

ith some derivations, the partial derivatives with respect to x e 
j 

nd γe 
l 
are obtained as follows: 

∂� ( j, l) 

∂x e 
j 

= { 1 − c e l − σ (x e j γ
e 
l ) } γe 

l , (10)

∂� ( j, l) 

∂ γe 
l 

= { 1 − c e l − σ (x e j γ
e 
l ) } x e j . (11)

herefore, the update formula of γe 
l 
in the iterations is: 

e 
l ← γe 

l + η{ 1 − c e l − σ (x e j γ
e 
l ) } x e j , (12)

here η is the learning rate. Recall that x e 
j 
is an intermediate vec-

or calculated in the projection layer and our aim is to learn a vec-

or v ( e ′ ) for each element e ′ ∈ C ( e j ). To do so, v ( e 
′ ) is updated with

he partial derivative of x e 
j 
as follows: 

 (e ′ ) ← v (e ′ ) + η
L e −1 ∑ 

l=1 

{ 1 − c e l − σ (x e j γ
e 
l ) } γe 

l . (13)

Similarly, for a term-based instance ( t k , C ( t k ), s i ), let � (k, l) =
og P (c t 

l 
;γ t 

l 
, x e 

k 
) . And we have the update formulae as follows: 

t 
l ← γ t 

l + η{ 1 − c t l − σ (x t k γ
t 
l ) } x t k , (14)

 (t ′ ) ← v (t ′ ) + η
L t −1 ∑ 

l=1 

{ 1 − c t l − σ (x t k γ
t 
l ) } γ t 

l , (15)

here t ′ ∈ C ( t k ). When updating the session vector v ( s i ), both types

f instances are jointly considered and we have: 

 (s i ) ← v (s i ) + η
L e −1 ∑ 

l=1 

∂� ( j, l) 

∂x e 
j 

+ η
L t −1 ∑ 

l=1 

∂� (k, l) 

∂x t 
k 

. (16)

With the above derivations of the learning procedure for ses-

ion2vec+, the details of the learning procedure for session2vec in

ection 3 can be easily derived. Similar to session2vec, the time

nd space complexities of session2vec+ could be derived straight-

orwardly. 
Please cite this article as: L. Bing et al., Learning a unified embedding s

Systems (2018), https://doi.org/10.1016/j.knosys.2018.02.037 
. Training data and case study 

.1. Training data 

We employ a Chinese query log data set from Baidu search

ngine to conduct the vector learning with our proposed mod-

ls. Our method for detecting user session boundaries combines

he advantages of both time-gap-based session detection and task-

ased session detection [9] . First, the interval of two consecu-

ive queries should be less than 15 minutes. Second, the simi-

arity between two consecutive queries should be no less than a

hreshold. To calculate this similarity, we employ the term vec-

or trained in a baseline system, called Word2vec.B which will

e described later, to represent each query term and the sum of

hese term vectors is used as the feature vector of a query. The

osine similarity threshold is 0.5. We collected 23,676,669 ses-

ions as the training data. On average, each session contains 2.1

ueries and 2.3 clicks. Our data includes 10,413,491 unique queries,

3,126,252 URLs, 1,006,352 websites, and 3,965,539 terms (coming

rom queries and URL titles), respectively. 

.2. Case study 

.2.1. Semantic dimension demonstration 

We show the salient elements and terms in some dimensions

enerated by our session2vec+. Specifically, three dimensions with

he manually summarized titles “Star”, “Movie resource” and “Soft-

are resource” are illustrated in Table 1 . For each dimension, five

erms, five queries, and five websites are given. The English trans-

ations of the terms and queries are given in the brackets. These

erms and elements have the largest values in the corresponding

imensions, meanwhile their frequency is no less than 100. 

In the dimension of “Star”, the names of five stars from main-

and China and Hong Kong are output as the salient terms, such as

Jet Li” and “Andy Lau”. The queries in this dimension are mainly

earching for the personal information of stars. With respect to the

ebsites, the entertainment homepages of the five largest websites

n China are listed. In the dimension of “Movie resource”, the titles

f popular movies are output as the salient terms and the queries

re mainly about the information such as showtime and scheme

ong of the movies. One interesting observation is that although

Star” dimension and “Movie resource” dimension are related to 

ome extent, our model can generate different salient term sets

nd salient query sets focusing on different aspects. The main rea-

on is that searching star information and searching movie infor-

ation are two quite different information needs. Our element-

ased and term-based training instances are transformed from the

ndividual sessions so that these two different needs are well iden-

ified in the learning with such training instances. In addition, the

ebsites involved in these two needs are also quite different so

hat they can help differentiate the two information needs. 

.2.2. Vector demonstration 

The vectors of four smartphone-related terms are given in

ig. 5 . The first three terms are hot smartphone brand names,

amely, “�� (Apple)”, “�� (Samsung)”, and “�� (Mi)”, 2 in

hina. The other term is “� �� � (smartphone)”. The dimension

alues of these four vectors are correlated very well. The cosine

imilarity values among them are given in Table 2 . “Mi” is more

imilar to “Apple”, but “Samsung” is less similar to “Apple”. It is

ecause Samsung has quite diverse product lines, such as refriger-

tor and air conditioning. Therefore, the vector of “Samsung” is less

imilar to the vectors of “Mi” and “Apple”. Another reason is that
pace of web search from large-scale query log, Knowledge-Based 
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Table 1 

Salient elements and terms in three dimensions. 

Terms Queries Websites 

��� (Andy Lau) ��� � � (daughter of Andy Lau) ent.sina.com.cn 

� �� (Stephen Chow) � �� ��� (master of Jet Li) ent.qq.com 

Star �� (Bo Huang) � ���� (wife of Yun-Fat Chow) ent.ifeng.com 

� �� (Jet Li) ������ � (profile of Tony Leung) yule.sohu.com 

� �� (Yun-Fat Chow) � � � � �� (girlfriend of Jay Chou) ent.163.com 

��� (You Are the Apple of My Eye) � ���� �� (showtimes of Avatar) www.mtime.com 

� � � � (movie for smartphone) ��� � ��� (Infernal Affairs online watching) movie.douban.com 

Movie � ��� (If You Are the One) � ��� � �� (theme song of If You Are the One) www.verycd.com 

resource � �� � (online movie) ���� �� (showtimes of Ip Man) www.1905.com 

� �� (Avatar) �� � � �� � (box office of Aftershock) www.iqiyi.com 

���� (Xunlei player) � ���	� (download Kugou music box) www.wandoujia.com 

�� � 
� (Duote software) �� � �� (how to use SnapPea) www.onlinedown.net 

Software � �� 
� (Onlinedown software) ��� �	� (download Sohu player) www.pconline.com.cn 

resource � ��� � (Kuwo music box) � �� 
�	� � � (download center of Onlinedown) www.skycn.com 

�� � (SnapPea) � � 	� � (Skycn software) www.zol.com.cn 

Fig. 5. The vectors (first 50 dimensions) of terms “Apple”, “Samsung”, “Mi”, and “Smartphone”. 

Fig. 6. The vector of the term “Peking University” and the vector of the query “Peking University”. 

Table 2 

Cosine similarity of vectors in Fig. 5 . 

Apple Samsung Mi smartphone 

Apple 1 0.364 0.575 0.400 

Samsung 0.364 1 0.425 0.385 

Mi 0.575 0.425 1 0.408 

smartphone 0.400 0.385 0.408 1 
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3 https://code.google.com/p/word2vec/ . 
both Apple and Mi adopt the hunger marketing strategy which re-

sults in some similar semantic meanings, such as similar keywords

in the queries related to available time and online booking. 

The vector of the term “��� � (Peking University)” and the

vector of the query “Peking University” learnt by session2vec+ are

given in Fig. 6 . The term vector and the query vector are generally

correlated well and their cosine similarity is 0.591. As a result, we

can reasonably derive the vector of an unseen query with the term

vectors. These two vectors also show some differences. The reason

is that the term “Peking University” appears in queries or URL titles

with diverse meanings, such as “EMBA program in Peking Univer-

sity” and “Peking University Health Science Center”. For the query

“Peking University”, the dominant information need is to find the

university’s homepage or encyclopedia page. 

6. Experimental results 

In this section, we quantitatively examine the efficacy of our

model in four different tasks, including query similarity prediction,

website similarity prediction, URL ranking and entity recommen-

dation. 
Please cite this article as: L. Bing et al., Learning a unified embedding s

Systems (2018), https://doi.org/10.1016/j.knosys.2018.02.037 
.1. Variants of our framework 

Recall that we proposed two models, i.e., session2vec (s2v

or short) and session2vec+ (s2v+ for short), as described in

ections 3 and 4 respectively. session2vec+ can generate semantic

ectors for session elements and the terms from queries as well

s URL titles at the same time. Therefore, we have three different

ariants for session2vec+ according to the manner of utilizing the

earnt vectors. Variant session2vec+.A (s2v+.A for short) directly

ses the learnt vectors of the elements. Variant session2vec+.B

s2v+.B for short) interpolates the element vector and the vectors

f the terms from it. Precisely, for query q , the sum vector of the

ectors of the terms in q is first calculated. Then, the sum vector is

ummed with the learnt vector of q , and the result vector is em-

loyed as the vector of q . Variant session2vec+.C (s2v+.C for short)

ses the sum vector of the term vectors of an element as its vec-

or representation. Note that s2v+.C is applicable for both existing

lements in the training data and the unobserved elements. 

.2. Comparison systems 

We compare our model with a few baselines that can also learn

ector representations. 

Word2vec.A (W2v.A for short). We build this baseline system

y employing the Word2vec package 3 to conduct vector learning

n an instance set generated from our training data. This instance

et contains two types of sequences. The first type of sequence is
pace of web search from large-scale query log, Knowledge-Based 
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Table 3 

Results of query similarity prediction on Q_obs.. 

W2v.A W2v.B PLSA s2v s2v + .A s2v + .B s2v + .C 

NDCG@1 0.765 0.769 0.727 0.784 0.792 0.797 0.799 

NDCG@3 0.803 0.804 0.786 0.824 0.830 0.834 0.835 

NDCG@5 0.825 0.845 0.810 0.838 0.841 0.849 0.853 
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4 T-test is employed because the distribution of the results generally follow a nor- 

mal distribution, similarly hereinafter for the subsequent results. 
enerated from the queries and the URL titles of a session, and

he second type of sequence is generated from the queries and the

isited websites. The elements in each sequence follow their occur-

ence order in the session. For example, for the session in Fig. 2 ,

he generated sequences are ( q 1 , u 1 , u 2 , q 2 , u 3 , q 3 , u 4 , u 5 ) and ( q 1 ,

 1 , h 2 , q 2 , q 3 , h 3 , h 4 ). Then, the former sequence is transformed

nto a sequence of terms and the latter sequence is transformed

nto a sequence of terms and websites. After learning, W2v.A gen-

rates a vector for each term and each website. 

Word2vec.B (W2v.B for short). We build this system by run-

ing the Word2vec package on a corpus containing 1 billion Chi-

ese Web pages. Thus, a vector is generated for each term in the

orpus. Note that this corpus is much larger than the data used in

ur model as described in Section 5.1 , which brings in some ad-

antage for this baseline. 

PLSA . We run PLSA [23] on the pseudo-document corpus gen-

rated from our training data set. Specifically, we regard each term

equence generated for W2v.A as one pseudo-document. Then we

se PLSA to learn topic vectors for the terms. 

Note that researchers have proposed some approaches to han-

le a particular individual task in this section, and encourag-

ng results have been reported [4,14,25,52] . Although these pa-

ers described their methods with some details, reliable re-

mplementation is still not a trivial task. Because different data

ets are used, we cannot directly compare with their reported re-

ults. In fact, the vector representations generated by our model

an serve as input features for most of them. 

.3. Results for query similarity prediction 

In this section, we analyze our framework with a similar query

anking task to illustrate its behaviors under different variants,

amely session2vec, s2v+.A, s2v+.B, and s2v+.C. The dimension

umber of vectors is 100 and NDCG [26] is employed as the metric

o evaluate the performance. 

.3.1. Task setup 

Task description . In this task, we employ the vectors generated

y different methods to calculate the similarity between a source

uery and its candidate queries so as to rank the candidates. Co-

ine similarity is employed as the measure. For each source query,

ach of its candidate queries has a manually assigned relevance

core. Our aim is to examine the effectiveness of different meth-

ds in vector representation generation. If a method is effective,

ts capability of ranking the candidate queries should be good so

hat a higher NDCG score is achieved. 

Evaluation data . We employ a benchmark data set at Baidu

hat contains 500 source queries each of which is associated with

 candidate queries. A Likert scale with three levels is employed

o assess the candidate queries. Specifically, 3 means strongly rele-

ant, such as “Bill Gates” and “founder of Microsoft”, 2 means rel-

vant, such as “Bill Gates” and “Steve Jobs”, and 1 means irrele-

ant, such as “Bill Gates” and “Spider-Man”. Each candidate query

s assessed by 3 assessors and their average score is rounded to

he nearest relevance level. On average, each source query has 1.7

trongly relevant candidates, 1.2 relevant candidates, and 2.1 irrel-

vant candidates. Note that we employ a three-level Likert scale

ince it has less ambiguity in assessment. These 500 source queries

re divided into two parts, namely, the observed part, and unob-

erved part. In the observed part, each source query and its candi-

ate queries are observed in our training query log. This part has

29 source queries and it is referred to as Q_obs . The remaining

71 source queries compose of the unobserved part and we refer

o this part as Q_unobs . 
Please cite this article as: L. Bing et al., Learning a unified embedding s

Systems (2018), https://doi.org/10.1016/j.knosys.2018.02.037 
.3.2. Analysis of session2vec results on q_obs 

Recall that our session2vec can generate a vector representa-

ion for each training query. For the baseline methods, the fea-

ure vector of a query is obtained by summing its term vec-

ors. The results of different methods are given in the left part

f Table 3 . session2vec can outperform the baselines. Specifically,

n NDCG@1, session2vec outperforms PLSA, W2v.A, and W2v.B by

bout 8% (significant with P < 0.01 in paired t -test 4 ), 3% ( P < 0.05),

nd 2% ( P < 0.05), respectively. The following reasons can explain

he performance difference. First, our training instances are gener-

ted from session graphs. In each graph, the elements have similar

emantic meanings so that the contextual elements and the target

lement (i.e., e j ) in each training instance are semantically more

ohesive. Such training instances bring in less noise. Second, the

aselines generate query vectors by summing the term vectors, and

he semantic meaning of a query cannot be fully derived by sum-

ing the semantic meanings of its terms. In contrast, session2vec

egards each query as a basic item to generate vector represen-

ation. Third, our model maintains a session vector. Normally, the

emantic of a session is less ambiguous than that of a query. The

ession vector is useful to guide vector generation for queries via

eriving more precise information need. 

The Word2vec baselines also perform well. Especially, W2v.B

an outperform session2vec on NDCG@5. It is because W2v.B em-

loys a larger training corpus compared with session2vec, which

akes it have some advantages in ranking the queries with rel-

tively lower similarity. session2vec can perform better on rank-

ng more similar queries so that larger values on NDCG@1 and

DCG@3 are achieved. In addition, a large training corpus enables

2v.B to deal with sparse queries more effectively. W2v.A sim-

ly transforms the training sessions into sequences. Thus, it losses

ome click-through information of search sessions. 

.3.3. Analysis of session2vec+ results 

As discussed in Section 4 , session2vec is not able to tackle

parse queries effectively. In addition, if a query was not observed

n the training stage, session2vec cannot generate a vector repre-

entation for it. To solve these problems, we design session2vec+

hich incorporates the vector representation generation for terms

n a unified model. The generated term vectors can be used in dif-

erent variants as described in Section 6.1 . 

Results on Q_obs . To examine the effectiveness of session2vec+,

e first compare its variants with session2vec on Q_obs and the

esults are given in the right part of Table 3 . s2v+.A can outper-

orm session2vec by 1% on NDCG@1 (significant with P < 0.05 in

aired t -test). This shows that the unified learning in session2vec+

an generate better vector representation for queries. It is because

he lower part of the network in Fig. 4 for term vector learn-

ng can help to overcome the sparsity problem of session2vec to

ome extent. Specifically, with the term-based learning part, the

erived session vectors are more accurate since the sparsity prob-

em of terms is less severe. Consequently, accurate session vectors

an help generate better query vector representations. As we ex-

ected, s2v+.B can slightly outperform s2v+.A. It is because s2v+.A
pace of web search from large-scale query log, Knowledge-Based 
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Table 4 

Effect of query frequency. 

A’ B’ C’ D’ E’
[0-20%) [20%-40%) [40%-60%) [60%-80%) [80%-1]

A 0.799 0.799 0.793 0.792 0.790
[0-20%) 0.798 0.801 0.794 0.801 0.794

0.791 0.796 0.799 0.803 0.796
B 0.797 0.796 0.790 0.788 0.786

[20%-40%) 0.796 0.797 0.789 0.796 0.790
0.794 0.793 0.786 0.798 0.797

C 0.791 0.793 0.790 0.787 0.784
[40%-60%) 0.791 0.795 0.796 0.797 0.796

0.792 0.796 0.799 0.802 0.801
D 0.785 0.783 0.783 0.781 0.780

[60%-80%) 0.791 0.796 0.782 0.785 0.789
0.799 0.797 0.796 0.805 0.800

E 0.786 0.779 0.778 0.776 0.771
[80%-1] 0.792 0.787 0.790 0.782 0.797

0.807 0.803 0.792 0.790 0.798

Table 5 

Results of query similarity on Q_unobs.. 

s2v + .C W2v.A W2v.B PLSA 

NDCG@1 0.798 0.762 0.766 0.736 

NDCG@3 0.836 0.805 0.812 0.787 

NDCG@5 0.852 0.836 0.837 0.815 
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still suffers from the sparsity problem of the training data. s2v+.B

has the term vectors interpolated with the query vector so that it

can solve the sparsity issue better than s2v+.A. 

We see that s2v+.C is the most effective one. Com pared with

the performance of the baselines given in Table 3 , s2v+.C can out-

perform all results of them (significant with P < 0.05 in paired t -

test). The comparison shows that the sum vector of term vectors

generated by our session2vec+ can better derive the query vector.

It is because the unified learning by session2vec+ can align the se-

mantic meanings of queries and the terms better with the session

vector playing the role of bridge. In contrast, the generated term

vectors in the baselines are not as effective as ours for deriving

the query vectors. 

Compared with s2v+.A and s2v+.B, s2v+.C is also more effec-

tive. The reason for this outcome is that the sparsity of the train-

ing data still affects the reliability of the generated query vectors

by session2vec+, especially for the low frequency queries. Such ef-

fect degrades the performance of s2v+.A and s2v+.B since both of

them use the query vectors. To have a closer look of the sparsity

problem, we divide Q_obs into 5 equal buckets according to the

frequency of the queries. These buckets are referred to as Bucket A,

B, C, D, and E in descending order of frequency. Similarly, the can-

didates queries are also divided into 5 equal buckets, and they are

referred to as Bucket A’, B’, C’, D’, and E’. We evaluate the perfor-

mance of these three variants in different frequency intervals and

the results are shown in Table 4 . In each cell, the results of s2v+.A,

s2v+.B, and s2v+.C are given in the upper, middle, and lower po-

sitions, respectively. The largest value is underscored, in bold and

of green color, the smallest value is in italic and of red color, and

the median value is in normal font. As shown in the upper left of

Table 4 . s2v+.A and s2v+.B can perform better for more frequent

queries, When the queries become less frequent, the performance

of s2v+.A and s2v+.B declines. Meanwhile, s2v+.C is not affected

much and outperforms the other two. 

Results on Q_unobs . We also examine the performance of

s2v+.C on the unobserved portion Q_unobs. Its performance is

compared with the baselines and the results are given in Table 5 .

s2v+.C can outperform the baselines in all cases. Specifically, it

achieves 8%, 5% and 4% improvements (significant with P < 0.05
Please cite this article as: L. Bing et al., Learning a unified embedding s

Systems (2018), https://doi.org/10.1016/j.knosys.2018.02.037 
n paired t -test) on NDCG@1 values compared with PLSA, W2v.A,

nd W2v.B, respectively. This comparison demonstrates that the

erm vector representation generated with our model is more ef-

ective due to the unified learning strategy and modeling the ses-

ion vector. Combining the results in Tables 3 and 5 , we observe

hat s2v+.C is the most effective system. 

.4. Results for website similarity prediction 

.4.1. Task setup 

In this task, we employ the vectors generated by different sys-

ems in the calculation of website similarity. For the baselines PLSA

nd W2v.B, the vector representation of a website is obtained by

umming the vectors of the terms in the title of its homepage. Re-

all that one type of the training sequence for W2v.A has website

lements. Therefore, W2v.A adopts two methods to obtain the vec-

or of a website. The first method is the same as the above two

aselines and it is referred to as W2v.A.T. The second method di-

ectly uses the website vectors generated by learning and it is re-

erred to as W2v.A.S. With respect to our model, we have three

ariants, namely, s2v.S, s2v+.S, and s2v+.T. s2v.S and s2v+.S also

irectly use the learnt website vectors in session2vec and ses-

ion2vec+. s2v+.T adopts the same method as W2v.A.T to obtain

he vector of a website by summing term vectors. 

.4.2. Evaluation data 

This data set contains 500 source websites with different pop-

larity degrees. Each source website is associated with 5 candidate

ebsites. A Likert scale with three levels is employed to assess the

andidate websites. Specifically, 3 means strongly relevant, such as

sports.sina.com.cn” and “sports.qq.com”, 2 means relevant, such as

sports.sina.com.cn” and “www.sina.com.cn ”, and 1 means irrel-

vant, such as “sports.sina.com.cn” and “mil.qq.com”. On average,

ach source website has 1.6 strongly relevant candidates, 1.4 rele-

ant candidates, and 2.0 irrelevant candidates. We find that all the

ource and candidate websites are covered by our training data set.

.4.3. Results 

The results are given in Table 6 . The variants of our model out-

erform the baselines. Specifically, s2v+.S achieves 2% to 10% im-

rovements (significant with P < 0.05 in paired t -test) comprised

ith the baselines on NDCG@1. Among the variants of our model,

oth s2v+.S and s2v.S perform better than s2v+.T. It shows that the

irectly learnt vectors of websites are more effective for similarity

rediction than the sum of term vectors from the title. This ob-

ervation is different from the observation for queries. One reason

s that the sparsity problem for websites is not severe since the

umber of websites is much smaller than that of URLs and queries.

nother reason is that the title of a homepage, such as “The best

ar website in China”, sometimes contains unrelated terms such

s “the best” and “China”. These reasons can also explain why

2v.A.S performs better than W2v.B, even though the latter uses

 very large training corpus. 

.5. Results for URL ranking 

.5.1. Task setup 

In this experiment, we evaluate the task of re-ranking a set of

esult URLs for a query according to their relevance. For s2v+.C

nd the baselines, the relevance score between a query and its

andidate URLs is computed as the cosine similarity of their vec-

or representations. Still for each query, the vector representation

s obtained by summing the vectors of its query terms. For each

RL, the vector representation is obtained by summing the vec-

ors of the terms in its title. In addition to the baselines given

n Section 6.2 , we introduce another baseline, namely BM25 [40] ,
pace of web search from large-scale query log, Knowledge-Based 
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Table 6 

Results for website similarity prediction. 

s2v + .S s2v + .T s2v.S W2v.A.S W2v.A.T W2v.B PLSA 

NDCG@1 0.794 0.786 0.791 0.778 0.770 0.772 0.719 

NDCG@3 0.855 0.843 0.849 0.833 0.831 0.832 0.763 

NDCG@5 0.883 0.880 0.881 0.869 0.868 0.870 0.794 

Table 7 

Results for ranking result URLs. 

s2v + .C W2v.A W2v.B PLSA BM25 

NDCG@1 0.611 0.580 0.587 0.576 0.559 

NDCG@3 0.632 0.613 0.615 0.607 0.582 

NDCG@5 0.640 0.627 0.631 0.630 0.616 
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Table 8 

Results for entity recommendation. 

s2v + .C W2v.A W2v.B PLSA 

NDCG@1 0.325 0.305 0.312 0.260 

NDCG@3 0.378 0.354 0.360 0.307 

NDCG@5 0.396 0.376 0.386 0.339 
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hich is a ranking function commonly used to rank matching doc-

ments according to their relevance to a search query. Specifically,

ur BM25 baseline is a revision of the original BM25 formula to

onsider some necessary modifications, such as the normalization

f term frequency according to Singhal et al. [48] and the mod-

fication for inverse document frequency according to Fang et al.

16] . As discussed above, s2v+.C is the most effective variant of our

ramework and it also has better adaptability for unseen data. In

ddition, the URL vectors also face the sparsity issues. Therefore,

e conduct the comparison between s2v+.C and the baselines in

his task. 

.5.2. Evaluation data 

This data set contains 10 0 0 queries of various length and pop-

larity. On average, each query has 19.8 marked URLs that are re-

rieved with the query. A Likert scale with five levels is employed

o assess the relevance of each URL. Specifically, 5 means strongly

elevant, 4 means relevant, 3 means somewhat relevant, 2 means

omewhat irrelevant, and 1 means irrelevant. In this dataset, each

andidate URL for a test query contains all query terms in the page

ontent. 

.5.3. Results 

The results are given in Table 7 . All vector representation based

ethods can outperform BM25. It shows that relevance assessment

ased on the intent or topic analysis is more reliable than that

ith simple term matching. Our model achieves the best results

n all cases compared with the baselines. Specifically, it outper-

orms the baselines with improvements (significant with P < . 01

n paired t -test) from 4% to 9% on NDCG@1. This demonstrates

hat, among the vector representation based methods, our model

an better capture the semantic similarity relation between queries

nd URLs. The main reason is that when learning the vectors, our

nified model jointly considers different element types in the ses-

ions such as websites and URLs as well as terms so that the

earnt term vectors automatically encode the information of se-

antic similarity among the elements. 

.6. Results for entity recommendation 

.6.1. Task setup 

Major search engines recommend some entities that are rele-

ant to the query on the right of the result page. One such ex-

mple is given in Fig. 7 . In this example, the user issues a query

founder of Baidu”. The founders of three other Internet companies

n China are recommended. In this task, we employ the vector rep-

esentations in ranking the candidate entities of a particular query.

he comparison is conducted among s2v+.C and the baselines. The

ector representation of each query is obtained in the same way as
Please cite this article as: L. Bing et al., Learning a unified embedding s

Systems (2018), https://doi.org/10.1016/j.knosys.2018.02.037 
escribed in Section 6.5 . For the entities with multiple terms, their

ector representations are also generated in the same way. 

.6.2. Evaluation data 

We collected top 10 0,0 0 0 hot queries in one period from Baidu

earch engine. The candidate entities are obtained as follows. For

ach query, its recommendation entities in the same period are

mployed as the candidates for ranking. To avoid noise, the can-

idates with impressions (the number of times a candidate was

hown) less than 100 are filtered. The gold standard relevance

core is automatically assigned based on the click-through rate

CTR) of the entities. CTR is defined as the number of clicks on

n entity divided by its impression. We employ a Likert scale with

ve levels to assess the candidate entities. Specifically, 5 means

trongly relevant and the responding entities have CTR > 0.03,

 means relevant and the responding entities have 0.02 < CTR

0.03, 3 means somewhat relevant and the responding entities

ave 0.01 < CTR ≤ 0.02, 2 means somewhat irrelevant and the

esponding entities have 0 < CTR ≤ 0.01, and 1 means irrelevant

nd the responding entities have CTR = 0. 

.6.3. Results 

The results are given in Table 8 . s2v+.C achieves the best results

n all cases. Specifically, s2v+.C outperforms the baselines with 4%

o 25% improvements (significant with P < 0.01 in paired t -test) on

DCG@1. The reasons for this outcome are similar to those for the

bove experiments. In addition, the training data of session graphs

s more suitable to capture the entities’ semantic meanings in Web

earch scenario. Note that the result values in this task are much

ower than those of the previous tasks. The reason is that the can-

idate entities as well as their relevance scores are automatically

ollected with a click-through log of entity recommendation. Be-

ides semantic similarity, other factors such as personal interest

lso affect the clicking behavior of users and these cannot be fully

evealed by the similarity. 

. Related work 

.1. Query and URL vector learning 

Researchers had observed the potential of generating semantic

ectors for search queries and Web pages [19,25,46] . Deep Struc-

ured Semantic Model (DSSM) [25] and Convolutional Latent Se-

antic Model (CLSM) [46] employ deep neural network to map

he raw term vector (i.e., with the bag-of-words representation) of

 query or a document to its latent semantic vector. Both of them

se the full text of pages as input, and CLSM also captures the text

ontextual information. The network architecture in our model is

ignificantly different from them and it can be trained more effi-

iently. Furthermore, our framework also learns vectors of terms
pace of web search from large-scale query log, Knowledge-Based 
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Fig. 7. An example of entity recommendation. When a user searches “founder of Baidu”, a set of related entrepreneurs in Internet industry are given on the right of the 

result page, including Pony Ma (the founder of Tencent), Jack Ma (the founder of Alibaba), and Hongyi Zhou (the founder of Qihu). 
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and websites. Some other studies attempted to learn a binary vec-

tor for each query or URL. Each binary value shows whether the

URL or query is relevant to the semantic dimension [39] . Obviously,

binary value imposes limitations in real applications. 

Gao et al. proposed Bi-Lingual Topic Model (BLTM) and linear

Discriminative Projection Model (DPM) for query-document match-

ing at the semantic level [19] . The models are trained on click-

through data and the objectives are tailored for document ranking

task. More specifically, BLTM is a generative model and it requires

that a query and its clicked documents share the same distribu-

tion over topics and contain similar factions of words assigned to

each topic. DPM is learnt using the S2Net algorithm that follows

the pairwise learning-to-rank paradigm. Previous works also tried

to learn query-document similarity from click-through data with

implicit representation of semantics, such as click-through bipartite

graph or translation models [14,18,52] . In contrast to these meth-

ods, we model the search procedure in a more general perspective

by assuming that the search activities are governed by a hidden

unified space of Web search semantics. This formulation allows us

to incorporate more types of elements, and learn their representa-

tions uniformly. 

7.2. Distributed representation learning 

Another related area is the study of vector representation learn-

ing for words. A very popular model for estimating neural net-

work language model was proposed in [6] . However, this model

was computationally expensive. Word2vec [37] is a recent devel-

opment with a simple architecture for efficient training. A devel-

opment [30] of Word2vec by Le and Mikolov embeds paragraphs

into the same space for words, which shares similar architecture

with our session2vec. In this paper, we adapt the neural network

based model on graph data. Moreover, we intend to learn an in-

tent space that uniformly embeds the elements of different gran-

ularities, such as queries, websites, and terms. In comparison, our

work focuses on modeling graph data, not bag of words or word

sequences. In addition, the session vector is incorporated in the

networks for modeling the information need of users. More impor-

tantly, the tailor-made enhanced learning model delicately embeds

the terms in the same semantic space of the elements. Some other

works employed neural networks to learn concept vector represen-

tations of input text objects for similarity calculation under a su-

pervised setting [53] , while our work learns vector representations

for different elements in Web search under an unsupervised set-

ting. 

7.3. Query semantic identification 

Query semantic identification aims at identifying predefined se-

mantic classes or undefined clusters of queries. These works are
Please cite this article as: L. Bing et al., Learning a unified embedding s

Systems (2018), https://doi.org/10.1016/j.knosys.2018.02.037 
elated to our work from the perspective of query semantic dis-

overy since our models represent each query as a vector with its

imension values showing the relevance of the query with hidden

emantic topics. The investigated predefined query classes in previ-

us works [5,17,45] include “Internet”, “Autos”, “NBA”, “shoes”, etc.

ome works classified queries by search tasks such as “purchase

omputer”, “plan a travel”, “job-finding query” [27,31,47] . Classify-

ng the queries into pre-defined classes is a challenging task since

ueries are short and ambiguous [33,43,49] . It is observed that

sers with similar information needs click the same group of URLs,

ven though the queries they issue vary [51] . Based on this ob-

ervation, researchers hypothesize that queries within such a clus-

er express highly similar information needs. Click-through bipar-

ite graph is commonly used in query clustering studies [4] . Some

esearchers studied the importance of query templates and struc-

ured patterns [1,13,32] . They concluded that a large fraction of

ueries follow some templates in most examined domains. Other

tudies identified different intents of an ambiguous query with

ts following refined queries or the clicked URLs [24,42] . Different

rom the above works, we do not explicitly assign a semantic la-

el (e.g. “Internet” and “purchase computer”) to queries or gener-

te query clusters. Instead, a vector representation of each query is

omputed, which could serve as input features of other tasks. 

. Conclusions and future work 

In this paper, we proposed a framework to uncover a unified

emantic space for Web search. Two neural-network-based mod-

ls are developed to learn continuous vectors for elements and

erms. Compared with previous studies, our framework can per-

orm hidden semantic learning for different types of elements uni-

ormly, which enables the similarity calculations across element

ypes. Moreover, our models perform vector representation learn-

ng on graph data by converting a graph vertex as a training ex-

mple with its neighboring vertices as the context information. Ex-

erimental results show that the learnt vector representations are

ore effective than some standard methods (including Word2vec

nd PLSA) in four finer tasks of Web search. 

For the future work, a few directions are worthwhile to explore.

he first direction is to extend our framework to model the inter-

st profile of use rs. One way is to employ the learn session vec-

ors to derive the user interest profile. Another way is to directly

nvolve the users into the learning procedure. The second direction

s to enhance the session graph with the information of click order

nd dwell time. The third direction is to derive the real-time in-

ormation need with the partial information of the current search

ession. 
pace of web search from large-scale query log, Knowledge-Based 
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