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Abstract

It is necessary to eliminate cluttered information in Web
pages, such as navigation bars, related readings, copyright
notices, since they can cause additional burden to search
engines. In this paper, a Web page is treated as a sequence
of content cells, where each cell owns its score according
to our Mountain Model. Primary content cells are distin-
guished from those cluttered content cells by the features
processed only by primary cells. A universal classifier is
trained based on these features for a global utility. To make
it more precise, we also provide a site-oriented classifier. An
algorithm is thus schemed out for primary content extrac-
tion based on Mountain Model. Experimental results show
that our model works with both accuracy and time efficiency
compared with the existing models.

1. Introduction

In Web pages, cluttered information includes navigation
bars, related readings, advertisement links, copyright no-
tices, responsibility statement and time-stamps. Such in-
formation items are functionally useful for human viewers
and necessary for the Web site owners, however, cluttered
message can cripple the performance of many modules of
search engines, including the index, ranking function, sum-
marization, duplicate detection, etc. For example, in one
data set of our experiment, 46.6% of the 821 pages’ visi-
ble information is cluttered information. What burden will
search engines suffer from these clutters? No doubt that it
will bring about a lot of difficulties. So for the sake of im-
proving the performance of search engines, it is highly nec-
essary to filter out the cluttered content from the primary
content.

However, as far as we have known, there is no quite po-
tent solution to handle this problem with both high accuracy
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and efficiency. There are mainly two obstacles in the way.
Firstly, to be up against so heterogeneous a Web, any at-
tempt to seek a method which works both accurately and
universally is not an easy task. Secondly, the method’s time
complexity must be acceptable when applied to process
a large amount of pages. Page structure based methods
[17][14][8] are required to adapt themselves to different
Web sites’ template structures since different sites have their
own templates in publishing pages, which is very difficult
for machines, as we know. Another disadvantage of the
page structure based methods is that they must consider the
site as a whole while processing, because only several pages
cannot reveal the structure’s law in the site, it must bring in
a waste of both time and memory space. A case in point is
that, DOM tree [1] structure are widely used to analyze Web
pages and extract primary contents[5][15][3]. Confessedly
it spends too much time on both building the DOM tree and
navigating in it, so time cost is intolerable when these meth-
ods are employed to deal with large amounts of pages.

In order to overcome the above obstacles and eliminate
the limitations, we propose a novel model to present a Web
page. Visible information of a page is scattered in differ-
ent bars according to its position in the HTML code when
we use a standing bar to figure its existence, and the bar’s
height to denote its score. Since the list of these bars
composes a shape like an undulating mountain, we call it
a Mountain Model (MM). When we establish an MM to
present a page, it is necessary to draw a clear picture of
the differences between informative fragments and uninfor-
mative ones based on both structure-independent and site-
independent features of informative fragments. To distin-
guish the topic related informative fragments from the clut-
tered information, a learning-based SVM classifier is used.

The rest of the paper is organized as follows. In Sec-
tion 2, we review related work. The Mountain Model is
described in Section 3. Section 4 presents implementation
for identifying primary content of a Web page based on the
Mountain Model, and Section 5 shows the performance of
this model. Finally we draw the conclusion in Section 6.

978-1-4244-2358-3/08/$20.00 © 2008 IEEE CIT 2008479



2. Related Work

According to the work of Yi et al.[17], in most stud-
ies of Information Retrieval, Web page data cleansing can
be grouped into two categories: global-scale data cleans-
ing and local-scale data cleansing. The work of Global-
scale data cleansing includes PageRank[2], HITS[13],
TrustRank[12], and they are based on the hyperlink struc-
ture of Web pages, to upgrade the high-quality pages and
degrade the low-quality ones.

In local-scale Web data cleansing, many researchers have
considered using the tag information and dividing a page on
the basis of the type of tags[16]. Cai et al.[5, 4] use the lay-
out structures to build the visual structure of a Web page
and fulfill the partitioning task in terms of the visual struc-
ture. After a Web page is partitioned into several blocks,
algorithms based on learning mechanisms[15] or based on
hyperlink structure [3] can be performed to locate the im-
portant blocks or cleanse the unimportant ones. I. Chibane
et al. also present their work based on visual structure [7],
and they assume that every visual block denotes a topic.

Besides using information inside a Web page, re-
searchers have also tried to find the common style of noisy
data inside a Web site, which is called Site Style Tree by
Yi et al.[17]. With this method they denote Web pages in a
site into main content blocks and noisy blocks. Other site-
oriented methods include [11, 10, 14, 8].In [11], an adver-
tisement server blacklist is used to eliminate the advertise-
ment. A genre-based clustering approach is employed in
[10], where different genres have their own filter configura-
tions. In [14], entropy of a page block is computed based on
the key words, then people dynamically select the threshold
of entropy that partitions blocks into either informative or
redundant. A tag-set is used in [8] to divide a page into
blocks, and then IBDF is employed to denote the blocks’
importance, similar to IDF for words. Page level template
detection is studied in [6], where the authors investigate the
pages’ features, and use these features to score the DOM
tree nodes. After isotonic smoothing is done on classifier
scores, page level templates are generated accordingly.

3. Mountain Model

Definition 1 (Primary Content): In a Web page, the pri-
mary content is the most important and useful part in terms
of semantic meaning.

Web page document is a semi-structured data presenta-
tion form, where visible information is what end users can
see, including primary content and cluttered information.
Visible information is usually surrounded by invisible part,
which includes HTML code and other scripts.

3.1. Information Cell

Definition 2 (Information Cell): In Web page source
codes, a visible information segment that inclosed in ‘>’
and ‘<’ tightly is called an Information Cell (IC).

All visible information of a Web page belongs to a cer-
tain IC, no matter it is primary content or cluttered. In our
Mountain Model (MM), a Web page is treated as an IC se-
quence after eliminating all invisible codes. Thus primary
content extraction from a page is transformed into primary
ICs identifying in an IC sequence. Figure 1 presents a Web
page’s IC sequence, where x-coordinate is the serial num-
ber of Cells, and y-coordinate denotes Cells’ score. In this
example page, the primary content scatters from 48 to 112
approximately, and at the end of the sequence there are sev-
eral high score Cells, which contains copyright declaration.
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Figure 1. A Web page’s mountain model pre-
sentation.

The Cell feature selection should play a part in distin-
guishing the primary Cells and cluttered Cells. In most
cases, primary content has higher cohesion and its Cells are
content rich ones, while anchor text seldom appears in it.
Some of cluttered information are hyperlink styled, such as
navigation bars, related readings and etc, so the visible in-
formation of them is anchor text, which seldom contains
punctuation, especially full stop. Other cluttered informa-
tion are plain texts, such as copyright and time-stamps. This
kind of cluttered information is often relatively short and
surrounded by a large amount of source codes. The features
listed in Table 1 are used to describe a single Cell.

In Table 1, text length denotes a Cell’s visible character
number, and punctuation number represents how many sen-
tence segmentation punctuations the Cell contains. Whether
the Cell’s information is full stopped is indicated with a
Boolean symbol S. Symbol A indicates whether it is an-
chor text. Visible Ratio is the proportion occupied by the
visible content in a Cell’s source code span. A Cell’s source
code span is the code length from the center of its left neigh-
bor’s right boundary ‘<’ and it owns left boundary ‘>’ to
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Table 1. Cell Features
Name Symbol Function

Text Length L Both
Punctuation Number P Link Style
Whether Full Stopped S Link Style
Visible Ratio V Both
Whether Anchor text A Link Style

the center of itself and its right neighbor. The function col-
umn in Table 1 denotes the feature can be applied to both of
two clutter styles or only one. The Cell scoring function is:

CS = (L/γ + P )(1 + αS)(1 + βA)V (1)

where α , β, and γ are predefined constants. Normally, we
set α = 0.5, β = -0.5, by which we mean that a full stopped
Cell’s score is upgraded 50%, while an anchor text should
be degraded 50% respectively. Constant γ depends on the
language of the Web page. For example, a sentence in Chi-
nese contains 12 Chinese characters on average, γ is 12 in
Chinese language environments; while in English, about 15
words in a sentence on average, and 5 letters in a word on
average, so γ is set to 75 in English. If the language’s sta-
tistics information is unkown, γ can be assigned 1.

3.2. Smoothing Function

According to the probability distribution in Figure 1, the
primary Cells’ neighbors are more likely to be primary, and
cluttered Cells’ are more likely to be cluttered, so the ef-
fects coming from a Cell’s neighbors should be considered
in identifying the Cell primary or cluttered. For example,
the score of primary Cell 81 is low, however, if its sur-
roundings are considered together, it can also be judged as
primary. For the same reason, scores of 174 and 175 should
be dragged down by their surroundings. Therefor, we may
safely draw the conclusion that high score Cells upgrade
their neighbors, whereas the low ones degrade their neigh-
bors. This process is called smoothing:

CSSn = CSn +

∑n+�sw/2�
i=n−�sw/2�,i �=n(CSi − AV Gn) × wi

sw − 1
(2)

where CSSn is the score of Cell n after smoothing, CSn is
the original score, sw is the smoothing window size, AV Gn

is the average original score of the Cells in the window, wi

is a weight factor assigned according to Equation 3.

wi =

{
1 − |n − i| × 0.2 if |n-i|≤ 4,

0.1 if |n-i|> 4.
(3)

When we only consider the neighbor Cells’ effect, mean-
while neglecting the source code distance (SCD), side-
effect appears. Two neighboring Cells’ SCD is the code’s

length between the left one’s right boundary ‘<’ and the
right one’s left boundary ‘>’. The further two Cells’ SCD
is, the weaker effect they have on each other. To manifest
two neighboring Cells SCD and separate them, some blank
Cells are inserted. Since primary content often has high co-
hesion, very few blank Cells will be inserted. On the bound-
ary of primary content and cluttered information, there are
much source code and script normally, inserted blank Cells
can prevent the primary Cells upgrading the cluttered ones
to a certain extent. Obviously, we must implement blank
Cell insertion before applying smoothing function.

3.3. Information Ridge

Primary information Cells have high scores and mass
distribute in one or several segments in the MM, or Ridges.
Definition 3 (Information Ridge): Information Ridge is a
sequence of Cells which satisfies the following three con-
ditions: Firstly, at least one Cell’s score is higher than
peak threshold; Secondly, there is no such continuous sub-
sequence exists, whose length is longer than a span window
size and the containing Cells’ scores are all smaller than pri-
mary threshold; Thirdly, the first and last Cells’ scores are
larger than primary threshold.

Primary threshold is the average score of all the Cells
contained in a page. By expanding primary threshold for
certain times, we get peak threshold. The multiplier is peak
factor.

Some Web pages contain long cluttered information,
such as responsibility statement, which is sometimes even
longer than some short primary. So considering all the
Ridges to be primary is too coarse. To distinguish primary
Ridges and cluttered ones, we abstract four Ridge features.
Definition 4 (Ridge Features): A Ridge has four aspects
of features: height, width, Ridge position (RP ) and Cell
position (CP ), computed respectively by formula 4, 5, 6
and 7, where AV Gn is the average of Cells’ scores in the
nth Ridge, and AV Gmax is the maximum one in all the
Ridges. NoCn is the number of Cells in the nth Ridge, and
NoCmax is the maximum one in all the Ridges. NoR is
the number of all the Ridges, FCNn is the first Cell num-
ber of the nth Ridge, TC is the total number of Cells in
the page, respectively. Observation shows that almost all
primary Ridges have relatively larger height and width, and
smaller RP and CP . The four features’ values compose a
vector, we call it feature vector(FV).

height = AV Gn/AV Gmax (4)

width = NoCn/NoCmax (5)

RP = n/NoR (6)

CP = FCNn/TC (7)
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Ridge Algorithm 

Input: A Cells sequence C of a page 

Output: Primary Content (PC)

begin

RSet GetRidgeSet(C)

for each r RSet do

r.fv = GetFeatureVector(RSet,r)

isPrimary Classify(r.fv)

if isPrimary then

PC = PC r.content

end

Figure 2. Ridge algorithm.

4. The Ridge Algorithm

There are three steps to extract primary content: obtain
all Ridges based on MM, then compute FV(h, w, RP , CP )
for each Ridge, finally distinguish primary Ridges from
cluttered ones with a Support Vector Machine classifier.
The pseudocode of Ridge Algorithm is shown in Figure 2.

In the GetRidgeSet function, a Cell whose score is
higher than peak threshold is detected at the beginning, and
then from the backward and forward of the Cell, more Cells
are added to the Ridge if they satisfy the Ridge conditions.
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Figure 3. Effects of smoothing window size
and Cell added threshold.
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Figure 4. Effects of span window size and
peak factor.

Table 2. Training Data Set
Domain Sites

com sina, 163, qq, msn, xinhuanet, sohu, tom,
pcgames

edu PKU, tsinghua, moe, neea
gov pbc, gwytb, gov-money, cei
net dinosaur, netmil, superarmy, 1n0, cyol
org newssc, chinaschool, chinacourt
blog blog.zol.com.cn, blog.qianlong.com,

blog.edu.cn, 52blog.net, blog.qq.com,
blog.163.com, blog.com.cn, blog.sohu.com,
www.bokerb.com, blog.hexun.com

Continuously, all Ridges can be detected.
The training data set is listed in Table 2. To get a univer-

sal classifier (UC), we build a data set with a great diversity,
which contains 1340 pages from 34 sites’ 72 categories with
20 pages per category.

Four-fold cross validation is employed for training. We
divide the training set into 4 equal parts. In each process,
one part is used as the test set, and others as the training
set. In the training set each page’s Ridges are manually la-
beled as primary or cluttered, then we get a group of FVs.
Feeding this group features to an SVM training algorithm
with RBF kernel to get a classifier, and then the classifier is
used to judge the Ridges in the test set. Finally, four rounds’
average performance under each parameter combination is
computed for study of the effects of model parameters.

Figure 3 shows the number of pages with good enough
F-Measure(given in next section) as a function of the Cell
threshold and smoothing window size. In Figure 3, if the
threshold is 50 and the SCD is 500, 10 blank Cells can be
inserted. When the threshold is smaller, say 50, the larger
smoothing windows have similar performance because too
many blank Cells added. As the threshold grows, the per-
formance of windows 9 and 11 becomes poorer. Smooth-
ing window size 5 in our experiment outputs the best per-
formance in each threshold. The threshold value is set to
200 when time efficiency is considered. The influence of
span window size and peak factor on the performance of our
method is shown in Figure 4. It is acceptable with span win-
dow size 5, and peak factor 3. We acquire all 1340 pages’
FVs under the optimal parameters and label them manually,
then feed them to SVM algorithm to train a UC.

5. Performance Evaluation

Precision is defined as the ratio of the number of cor-
rect sentences (primary content sentences) c extracted and
the total number of sentences (all sentences suggested by
an algorithm) t extracted (p = c/t). Recall is defined as
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Figure 5. Performances on data sets U 1 and U 2.

the ratio of the number of correct sentences extracted and
the desired number of correct sentences which includes the
number of correct extracted sentences and the missed sen-
tences m. That is r = c/(c+m). F-Measure(FM) is defined
as FM = 2 × pr/(p + r). If the FM value is larger than
0.9, the result is good enough. We use the Levenshtein Dis-
tance to instead the precision, recall and FM if the primary
content cannot be segmented into sentences, such as name
list pages. If a suggested primary Cell’s content is anchor
text and contains no punctuation, it is treated as a sentence.

Four data sets listed in Table 3 are employed to eval-
uate universal performance with UC. Diverse data sets
U 1 and U 2 are results returned by Google with queries
Wanggang and petroleum price. Web site data sets U 3
and U 4 are gained from NDRC(www.ndrc.gov.cn) and Ya-
hoo(www.yahoo.cn).

The performance of our algorithm on data set U 1 and
U 2 is shown in Figure 5. On data set U 1, the number of
pages with FM larger than 0.9 is 734, about 90% of the total.
On data set U 2 this number is 730, 86% of the total. 92.6%
and 91.1% of pages in two sets respectively have recall
values higher than 0.95, which indicates that our method
makes very little useful information lost. We argue that if a
page’s FM value is larger than 0.8, the page’s primary con-
tent is located rightly. We achieve 92.6% and 92.4% on two
sets respectively. In [15], they achieved 76.9% to locate the
most important block of a page on their data set.

Figure 6 illustrates that our algorithm can also achieve
good performance on individual sites without any special
training. We find that the performance on data set U 3 is
excellent, because the site from the domain of gov is of high
quality and low cluttered. On data set U 4 we also achieve
90.5% pages with FM value above 0.9.

Two data sets we employ for site-oriented performance
evaluation are listed in Table 4, from which 529 pages are
gained from four categories of Sina(www.sina.com), and
518 pages from three categories of QQ(www.qq.com).

We select 10 pages from each category to compose train-
ing sets, so 40 pages for Sina, and 30 pages for QQ. Two
site-oriented classifiers(SoC) are obtained as the same as

Table 3. Universal data sets
Date set Query/Site Pages number

U 1 Wanggang 816
U 2 petroleum price 843
U 3 NDRC 524
U 4 Yahoo 502

Table 4. Site-oriented data sets
Data set Site Categories Number

SO 1 Sina news, finance, sports, mili 529
SO 2 QQ stock, news, technology 518

getting UC, then used to their own data set respectively.
Site-oriented method SST mentioned in [17] utilizes the

common structure features of the pages that come from the
same site, so all the pages from one site must be taken as a
whole. The performance of SST and our Mountain Model
are compared in Figure 7. Results show that our MM out-
performs SST almost in all cases. It indicates that not only
can MM be used universally, but also it can get relatively
good performance on regular sites with SoC.

Processes of primary content extraction include getting
Cell sequence, scoring each Cell and smoothing them, and
executing Ridge algorithm. Theoretical analysis of these
processes shows that our method’s time complexity is lin-
ear. Figure 8 shows the time efficiency of our algorithm
on data U 1, and we can see the time spent is linear to the
number of page processed. About 19.5 pages processed per
second, while in [8] the best performance is 3 pages per sec-
ond. Another advantage of our algorithm is that its memory
cost is stable, no matter how many pages processed.

6. Conclusion

To extract primary content from Web pages efficiently
and accurately, Mountain Model is proposed to present
pages. We use Cell features to eliminate the cluttered links,
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Figure 8. Time efficiency.

and use Ridge features to distinguish primary Ridges from
cluttered ones. Our method is site-independent, and exper-
iments show excellent performance is achieved with both
accuracy and efficiency compared with existing models.
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