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ABSTRACT
It is well known that synonymous and polysemous terms
often bring in some noises when calculating the similarity
between documents. Existing ontology-based document rep-
resentation methods are static, hence, the chosen semantic
concept set for representing a document has a fixed resolu-
tion and it is not adaptable to the characteristics of a doc-
ument collection and the text mining problem in hand. We
propose an Adaptive Concept Resolution (ACR) model to
overcome this issue. ACR can learn a concept border from
an ontology taking into consideration of the characteristics
of a particular document collection. Then this border can
provide a tailor-made semantic concept representation for a
document coming from the same domain. Another advan-
tage of ACR is that it is applicable in both classification
task where the groups are given in the training document
set, and clustering task where no group information is avail-
able. Furthermore, the result of this model is not sensitive
to the model parameter. The experimental results show that
ACR outperforms an existing static method significantly.
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1. INTRODUCTION
Some carefully edited ontologies include WordNet [7], Cyc

[6], Mesh [9] and etc. Previous empirical results have shown
improvement in some cases utilizing these ontologies [4, 8,
9]. However, the existing works have an obvious shortcom-
ing: the strategies they adopted are static. For example,
one strategy is to use each synonym set in the WordNet as
one dimension in the representation vector of the documents.
Therefore, the resolution for representing the documents be-
longing to different collections is the same. Suppose we have
two document collections, the first one has coarse granular-
ity categories, such as sports, military and etc, while the
second one has finer granularity categories, such as football,
basketball and etc. In the first collection, we should consider
football players and basketball players are related, while in
the second one they should be unrelated. So an adaptive
strategy should outperform the static one.

In this paper, the proposed Adaptive Concept Resolution
(ACR) model can learn a concept border from an ontology
taking into consideration of the characteristics of a partic-
ular document collection. Then this border can provide a
tailor-made semantic concept representation for a document
coming from the same domain. The structure of an ontology
is a hierarchical directed acyclic graph1 (refer to the example
in Figure 1), and the border is a cross section in the graph.
All the concepts located below the border will be merged
into one of the concepts on the border. We use a gain value
to measure whether a concept is a good candidate for the
border. The gain value is calculated based on the character-
istics of the given document collection. Therefore, our model
can generate different tailor-made borders for different col-
lections adaptively. Another advantage of ACR is that it
is applicable in both classification task where the groups
are given in the training document set, and clustering task
where no group information is available. To do so, we only
need to change the granularity, that is either cluster or in-
dividual document, for calculating the gain value. So ACR
can be applied to both classification and clustering. The ex-
perimental results show that our model can outperform an
existing static method in almost all cases.

1A hierarchical directed acyclic graph is a directed acyclic
graph with the layer information on each node. The head
node of an edge must have a higher layer than the tail.
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Figure 1: A fragment of WordNet structure. Each
node is a concept, and the label is its synonym set.

2. ADAPTIVE CONCEPT RESOLUTION
2.1 Preliminary and Overview

Concept is the basic component of an ontology, and each
concept refers to an abstract entity or a real entity. We give
a formal definition of a concept:

Definition 2.1. Concept: A concept π is a quadruple
〈id,Ω, σ,Υ〉, and the items indicate its ID, synonym set,
gloss, and hyponym concept set respectively. We refer to
the items with π.id, π.Ω, π.σ and π.Υ.
In this paper, we select WordNet2.1 as an instance of the
ontology. In Figure 1, a fragment of WordNet is given. Take
the concept “island” as an example, Ω is {island}, σ is “a
land mass that is surrounded by water”, and its hyponym
concepts are shown in the dashed box. The first term in a
synonym set can be used to refer to the concept.

Some concepts may have more than one hypernyms, as
exemplified by “Wight” at the bottom right in Figure 1. We
call this kind of concept ambiguous concept. Therefore, on-
tology’s structure is a Hierarchical Directed Acyclic Graph
(HDAG). The depth d(π) for the π is defined as follows:

d(π) =

{
0 if π = root,

maxπ′∈{π′|π∈π′.Υ} d(π′) + 1 otherwise.
(1)

Figure 2 depicts an overview of the Adaptive Concept Res-
olution (ACR) model, which has two main parts, namely, the
learning part on the left and the utilizing part on the right.
In the learning part, given a document collection and an
ontology graph, the algorithm learns which concepts have
better information gain and generates the elements for the
border B. Each concept in B encapsulates all its descen-
dants shown in the original ontology graph. For example,
the terms in π1 and π2 are added into π.Ω to get a derived
concept πb. Thus, the border is tailor-made for the given
document collection. In the border utilizing part, B is used
to represent a document coming from the same domain col-
lection, and each concept in B is one dimension in the vector.
These two parts will be discussed in detail in the following
subsections. Other technical details, such as virtual concept
for solving the unbalance problem, recursive calculation of
the gain value and time complexity can be found in our
technical report [1].

 

Training 
document 
collection 

 

  

… … 

 

      

Ontology 
graph  
 π  

π1  π2  

 

   

    Concept 
border B 

π
b  

Concept 
border 

generation 

Concept-based 
document 

representation 

[w1, w2, …] 

Concept 
extraction & 

matching 

Concept 
extraction & 

matching 

A document 
in the same 

domain 

Figure 2: Framework of ACR model.

2.2 Concept Border Generation
2.2.1 Gain Function

To generate the concept border, the leaf concept is merged
into its hypernym π recursively, and we define gain(π) to
measure whether the merging is profitable:

gain(π) =

1
|π.Υ|

∑
π′∈π.Υ Gentropy(π′)

Gentropy(π)
, (2)

in which Gentropy(π) is defined as:

Gentropy(π) = entropy(Ωgπ)

= −
∑
ui∈D

p(ui|Ωgπ) log p(ui|Ωgπ), (3)

where Ωgπ = π.Ω ∪π′∈Πdπ
π′.Ω, and Πd

π = {π′|π  π′} is the

descendant set of π. D = {u1, u2, · · · } is a document set. If
there exist clusters in D, each ui represents a cluster. Oth-
erwise, each ui represents a single document. And p(ui|Ωgπ)
is the probability of ui given Ωgπ, which is calculated as in
Equation 4:

p(ui|Ωgπ) =

∑
tj∈Ω

g
π
wi,j∑

uk∈D,tj∈Ω
g
π
wk,j

, (4)

where wi,j is the weight of tj in ui.
It can be observed that 0 < gain(π) ≤ 1. The larger

the gain value is, the less the noise is brought in because of
merging π′ into π. If gain(π) ≥ θ (profitable threshold), the
merging will be performed. Until now, we discuss the prob-
lem in a bottom-up fashion (generalization). We can also
consider in a top-down fashion (specialization) using merg-
ing operation instead of splitting operation, and gain(π) can
still be used in the same way. We name these two methods
as GBG-g and GBG-s respectively.

2.2.2 Gain-based Border Generation (GBG)
GBG-g is summarized in Algorithm 1. In each loop, we

attempt to merge the deepest leaves into their hypernyms.
First we get the deepest leaf πl (line 5), and locate πl’s
hypernym π. If πl is an ambiguous concept, we select its
hypernym which has the largest depth (line 6). If π con-
tains non-leaf and leaf hyponyms at the same time, these
hyponyms will not be merged into π, and set the border flag
under π (line 8). Otherwise, if it is profitable to merge π’s
leaves into it, all leaves’ synonym sets will be added into
π.Ω (line 11), then delete these leaves from G to make π
become a leaf (line 12). If the merging is not profitable, we
set the border flag under π (line 14). Finally, the border
is composed of all leaves with flg = true. In the subpro-
cedure set border flag, the unambiguous leaves of π become
the members in B (line 8), while the ambiguous leaves will
be removed from π.Υ and its depth is reset based on the
depth definition (Equation 1). Suppose an ambiguous leaf
π′ has two hypernyms. After removed from π.Υ, π′ becomes
an unambiguous leaf, and can be treated as an ordinary leaf
hereafter in the remaining processing of GBG-g. Note that
the depth of π′ should be reset based on its remaining hyper-
nym. The larger the depth of π′’s hypernym is, the earlier
the hypernym is considered. Thus, we always try to merge
π′ into its more specialized hypernym.

GBG-s is summarized in Algorithm 2. A recursive split-
ting operation is performed from the root. If using π to
represent all of its descendants is profitable enough, we will
encapsulate its descendants into π first (line 3 of top down),
then add π into B (line 4 of top down). Otherwise each of
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Algorithm 1 GBG-g

1: input: the HDAG G of an ontology, threshold θ
2: output: concept border B
3: each concept has a flag flg, and is false initially
4: while G has leaves with flg = false do
5: get the deepest leaf πl with flg = false
6: get π among πl’s hypernyms, which is the deepest
7: if π has non-leaf hyponym concepts then
8: set border flag(π)
9: else
10: if gain(π) ≥ θ then
11: set π.Ω← π.Ω ∪π′∈π.Υ π′.Ω

12: set π.Υ← {}
13: else
14: set border flag(π)
15: end if
16: end if
17: end while
18: set B = {π|π′s flg is true}
1: proc set border flag(π)
2: for all π′ in π.Υ do
3: if |π′.Υ| = 0 then
4: if π′ is ambiguous then
5: delete π′ from π.Υ
6: reset the depth of π′

7: else
8: set flg ← true for π′

9: end if
10: end if
11: end for

π’s hyponyms will be used as the parameter to invoke the
top down procedure (line 8 of top down). Once an ambigu-
ous concept is merged into any one of its hypernyms (direct
or undirect), it will be removed from G (line 5 of top down).

Before π is added into B, all terms contained by π’s de-
scendants are encapsulated into π, see line 11 in Algorithm
1 and line 3 of top down in Algorithm 2. As a result, the
descendants’ semantic meanings are merged into π. This
merging is performed under the guidance of gain(π), which
guarantees the trade-off is profitable.

2.3 Concept-based Document Representation
Before feeding documents into border learning part or rep-

resenting a document into a concept vector, it is necessary to
extract concepts from the documents. We propose a forward
maximum cutting method to extract the concepts. After
that, a context matching method is used to find the correct
matching for an ambiguous concept. The details of concept
extraction and matching are given in the technical report [1].

In the vector space model, each concept πi in B is one
dimension. Similar to TF-IDF, we introduce CF-IDF to in-
dicate the importance of πi in a certain document dj , calcu-

lated as cfidfi,j = cfi,j × idfi, in which cfi,j =
fi,j∑

πk∈dj
fk,j

,

Algorithm 2 GBG-s

1: input: the HDAG G of an ontology, threshold θ
2: output: concept border B
3: top down(root)

1: proc top down(π)
2: if gain(π) ≥ θ then
3: set π.Ω← π.Ω ∪π′∈{π′|π π′} π

′.Ω

4: put π into B
5: remove all concepts in {π′|π  π′} from G
6: else
7: for all π′ in π.Υ do
8: top down(π′)
9: end for
10: end if

Table 1: Details of the data sets.
No. of Doc. No. of Cate. Categories

NG20 19,997 20 ALL

TREC 12,637 20
354, 362, 365, 376, 393, 394, 397,
398, 401, 417, 422, 423, 432, 433,
434, 442, 446, 617, 625, 627

ODP 5,000 5
Arts, Business, Computers,
Health, Sports

MED 1,870 101 ALL

and idfi = log |D|
1+|{d|πi∈d}|

, where fi,j =
∑
tl∈πi.Ω

nl,j is the

frequency of πi in dj (nl,j is the frequency of the term tl in
dj), πi ∈ d means that at least one term in πi.Ω is contained
by the document d.

3. EXPERIMENTS
A previous method, known as the “only” strategy, in [4] is

implemented for conducting the comparison. In this strat-
egy, each concept is used as one dimension in the document
vector, and its weight is decided by the terms in the synonym
set. The strategy is called “Hotho” in this paper.

Four data sets are used in the experiments: 20 Newsgroups
(NG20), TREC data extracted from the document collection
Disc 5, ODP page set and OHSUMED (MED). The details
are given in Table 1.

3.1 Mining Tasks and Evaluation Criteria
In document classification, LibSVM [2] with linear kernel

is employed to conduct the classification, and 5-fold cross-
validation is adopted. Note that the gain calculation only
needs the training set. Because there exist many small clus-
ters in MED, we do not use this data set in classification. In
document clustering, K-Means algorithm is used to perform
the clustering. The entire document collection is used as
the input information of the gain value calculation. Each ui
refers to an individual document.

The commonly used F-measure (including macro- and micro-
average) and purity are used to evaluate the results of clas-
sification and clustering respectively.

3.2 Results and Parameter Analysis
The results are given Table 2. We can see that except for

the Fma of GBG-s on NG20, ACR dominates all other cases
in classification. Especially on the TREC data, both of our
methods can improve the existing method Hotho about 6%.
GBG-g performs better than GBG-s on NG20 and TREC,
while GBG-s achieves a better result on the ODP data. In
clustering experiment, considering NG20, TREC and ODP,
the improvements are more significant, about 4% to 8%. Of
the first three data sets, the performances of GBG-g and
GBG-s are similar. For the fourth data MED, GBG-g out-
performs GBG-s by more than 6%. So the tailer-made bor-
der for document representation is much better than the
static one in both kinds of text mining task.

Table 2: Performance comparison
NG20 TREC ODP MED

Classification

Fmi Fma Fmi Fma Fmi Fma N/A
Hotho .904 .793 .631 .580 .783 .653 N/A
GBG-g .934 .818 .696 .643 .809 .677 N/A
GBG-s .907 .780 .692 .635 .825 .689 N/A

Clustering
Hotho .752 .449 .783 .711
GBG-g .808 .516 .825 .795
GBG-s .807 .536 .830 .731

The effect of θ in the clustering is shown in Table 3. The
performance of GBG-g algorithm is not sensitive to θ. It
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is because the GBG-g algorithm merges the concepts in a
bottom-up fashion, and each merging is performed among
the concepts with high semantic relation to each other. There-
fore, the consistency of the semantic meaning of a derived
new concept can be guaranteed, even when the θ value is
small. When the θ value is too large, say 1.0, the con-
straint becomes too strict, and the related concepts cannot
be merged sufficiently. Consequently, the result is not as
good as the result under a smaller θ, say 0.7. GBG-s is rela-
tively more sensitive to θ than GBG-g. When θ is small, the
top-down splitting will stop early at some general concepts,
and these concepts are added into B. As a result, the gen-
eral meaning of the concepts in B brings in more noises to
the similarity calculation. So in GBG-s, a larger θ value can
achieve better results than a smaller value in general. We use
0.7 and 0.9 as θ values for GBG-g and GBG-s respectively.
Generally speaking, GBG-g is better and more stable than
GBG-s. It is because GBG-g considers the specialized con-
cepts first in generating the concept border, which are more
important than the general ones from the semantic point
of view. Furthermore, GBG-g can deal with the unbalanced
structure more effectively, because it does not merge the leaf
concepts with the non-leaf concepts.

The effect of θ in the classification is shown in Table 4.
Again we find that GBG-s is more sensitive to θ than GBG-
g because of the same reasons discussed above. Without
exception, the best results for both GBG-g and GBG-s are
achieved when θ is 1. Under the predefined cluster granu-
larity of calculating the gain value, a larger θ can prevent
the concepts which may bring in much noise to be added
into B. At the same time, because the gain value is calcu-
lated considering the cluster information, the related seman-
tic meaning in the same cluster can still be merged. Thus,
the value of θ used in both GBG-g and GBG-s is 1 in the
classification. Interestingly, we find that on NG20, GBG-g
can perform slightly better with both small and large θ val-
ues than with the medium values. One possible reason is
that after the concepts are sufficiently merged under a small
θ, the benefit obtained for calculating the similarity within
a cluster overwhelms the noises brought in at the same time.
While a larger θ achieves a better result by suppressing the
amount of noise. For other data sets, this exceptional situa-
tion does not happen. Therefore, we adopt a larger θ value
for all data sets.

4. RELATED WORK
As an important expert-edited ontology, WordNet has

been used to improve the performance of clustering and clas-
sification. Hotho et al. [3, 4] showed that incorporating the
synonym set and the hypernym as background knowledge
into the document representation can improve the cluster-
ing results. Jing et al. [5] constructed a term similarity

Table 3: Parameter θ’s effect in the clustering.
GBG-g GBG-s

θ NG20 TREC ODP MED NG20 TREC ODP MED
0.1 .795 .494 .807 .766 .710 .447 .729 .599
0.2 .795 .503 .804 .740 .726 .450 .732 .754
0.3 .765 .502 .824 .753 .779 .503 .718 .744
0.4 .792 .499 .815 .772 .781 .507 .751 .756
0.5 .800 .501 .815 .780 .755 .515 .781 .734
0.6 .799 .500 .819 .773 .795 .497 .785 .761
0.7 .808 .516 .825 .795 .792 .500 .780 .762
0.8 .803 .531 .828 .770 .789 .521 .766 .739
0.9 .806 .502 .837 .762 .807 .536 .830 .731
1.0 .802 .497 .809 .785 .805 .535 .826 .741

Table 4: Parameter θ’s effect in the classification.
GBG-g GBG-s

NG20 TREC ODP NG20 TREC ODP

θ Fmi Fma Fmi Fma Fmi Fma Fmi Fma Fmi Fma Fmi Fma

0.1 .930 .814 .659 .607 .796 .666 .824 .708 .537 .493 .688 .575
0.2 .932 .818 .655 .604 .802 .671 .820 .699 .530 .486 .692 .579
0.3 .930 .816 .657 .608 .799 .669 .830 .715 .544 .499 .657 .549
0.4 .921 .808 .665 .613 .805 .674 .875 .749 .524 .479 .666 .555
0.5 .917 .802 .655 .604 .791 .661 .887 .764 .565 .515 .764 .639
0.6 .919 .804 .669 .617 .796 .666 .883 .757 .595 .538 .802 .670
0.7 .917 .803 .664 .613 .792 .662 .902 .772 .642 .587 .806 .673
0.8 .930 .816 .680 .626 .807 .675 .898 .772 .666 .615 .799 .667
0.9 .930 .812 .686 .633 .807 .675 .896 .768 .685 .631 .800 .667
1.0 .934 .818 .696 .643 .809 .677 .907 .780 .692 .635 .825 .689

matrix using WordNet to improve text clustering. However,
their approach only uses synonyms and hyponyms, and fails
to handle polysemy, and breaks the multi-word concepts into
a group of single words. In Recupero’s work [8], two strate-
gies, namely, WordNet lexical categories (WLC) technique
and WordNet ontology (WO) technique, are used to create a
new vector space with low dimensionality for the documents.
In WLC, 41 lexical categories for nouns and verbs are used
to construct the feature vector. As a result the vector has
41 dimensions. In WO, the hierarchical structure is used as
the ontology information. Then words are grouped based on
the ontology they are related to.

5. CONCLUSIONS
In this paper, we propose an adaptive concept resolution

model to adaptively learn a concept border from an ontol-
ogy taking into consideration of the characteristics of a par-
ticular document collection. Then this border can provide
a tailor-made semantic concept representation for a docu-
ment coming from the same domain. Another advantage
of ACR is that it is applicable in both classification task
where the groups are given in the training document set,
and clustering task where no group information is available.
Two algorithms are proposed, namely, GBG-g and GBG-s,
to generate the concept border. In the experiments, GBG-g
performs better and is more stable than GBG-s.
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